Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Method of single exposure phase contrast imaging without analyser grating

Yao Chun-Xia He Qi-Li Zhang Jin Fu Tian-Yu Wu Zhao Wang Shan-Feng Huang Wan-Xia Yuan Qing-Xi Liu Peng Wang Yan Zhang Kai

Citation:

Method of single exposure phase contrast imaging without analyser grating

Yao Chun-Xia, He Qi-Li, Zhang Jin, Fu Tian-Yu, Wu Zhao, Wang Shan-Feng, Huang Wan-Xia, Yuan Qing-Xi, Liu Peng, Wang Yan, Zhang Kai
PDF
HTML
Get Citation
  • X-ray differential phase contrast imaging technology can reveal the weakly absorbing fine structure which cannot be observed by the conventional X-ray absorption contrast imaging. Hence, it has potential applications in many fields such as medical science, and material science. But in the traditional X-ray grating differential phase contrast imaging system, the analyser grating is used as a spatial filter, and needs to be phase stepped, then multiple exposures are required for information extraction. Thus this leads to high-dose radiation exposure and low efficiency of X-ray utilization. All these disadvantages limit its application in various disciplines. In order to cope with the above issues, a new algorithm based on single-shot grating differential phase contrast imaging system without analyzer grating is proposed. In such a system the absorption, refraction and scattering information can be obtained from one projective image of the sample acquired by a high-resolution detector. The reliability of this new algorithm is confirmed by numerical simulation. Compared with the phase stepping algorithm, the proposed algorithm can provide very accurate and reliable information extraction results without requiring the grating period to match with detector pixel size. It facilitates the reduction of the radiation damage to sample. We emphasize that this method is highly compatible with the future X-ray phase contrast imaging clinical applications.
      Corresponding author: Wang Yan, wangy@ihep.ac.cn ; Zhang Kai, zhangk@ihep.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0400900) and the National Natural Science Foundation of China (Grant No. 11535015)
    [1]

    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866Google Scholar

    [2]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar

    [3]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 P. Natl Acad. Sci. USA. 107 13576Google Scholar

    [4]

    Endrizzi M, Astolfo A, Vittoria F A, Millard T P, Olivo A 2016 Sci. Rep. 6 25466Google Scholar

    [5]

    Fu J, Shi X H, Guo W, Peng P 2019 Sci. Rep. 9 1113Google Scholar

    [6]

    Wei C X, Wu Z, Wali F, Wei W B, Bao Y, Luo R H, Wang L, Liu G, Tian Y C 2017 Chin. Phys. B 26 108701Google Scholar

    [7]

    Ge Y S, Li K, Garrett J, Chen G H 2014 Opt. Express 22 14246Google Scholar

    [8]

    Balles A, Fella C, Dittmann J, Wiest W, Zabler S, Hanke R 2016 XRM 2014: Proceedings of the 12th International Conference on X-Ray Microscopy Melbourne, Austalia, January 28, 2016 p020043

    [9]

    Marathe S, Zdora M C, Zanette I, Cipiccia S, Rau C 2017 Developments in X-ray Tomography XI San Diego, US, October 11, 2017 p103910S

    [10]

    Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010 Opt. Lett. 35 1932Google Scholar

    [11]

    Bennett E E, Kopace R, Stein A F, Wen H 2010 Med. Phys. 37 6047Google Scholar

    [12]

    Berry M V, Klein S 1996 J. Mod. Opt. 43 2139Google Scholar

    [13]

    Wernick M N, Wirjadi O, Chapman D, Zhong Z, Galatsanos N P, Yang Y, Brankov J G, Oltulu O, Anastasio M A, Muehleman C 2003 Phys. Med. Biol. 48 3875Google Scholar

    [14]

    Li P, Zhang K, Bao Y, Ren Y, Ju Z, Wang Y, He Q, Zhu Z, Huang W, Yuan Q 2016 Opt. Express 24 5829Google Scholar

    [15]

    Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E 2005 Opt. Express 13 6296Google Scholar

    [16]

    Diemoz P C, Coan P, Zanette I, Bravin A, Lang S, Glaser C, Weitkamp T 2011 Opt. Express 19 1691Google Scholar

    [17]

    Chou C Y, Anastasio M A, Brankov J G, Wernick M N, Brey E M, Connor Jr D M, Zhong Z 2007 Phys. Med. Biol. 52 1923Google Scholar

    [18]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grünzweig C, David C 2008 Nat. Mater. 7 134Google Scholar

    [19]

    Wang Z T, Kang K J, Huang Z F, Chen Z Q 2009 Appl. Phys. Lett. 95 094105Google Scholar

    [20]

    Momose A, Yashiro W, Takeda Y, Suzuki Y, Hattori T 2006 Jpn. J. Appl. Phys. 45 5254Google Scholar

    [21]

    Oltulu O, Zhong Z, Hasnah M, Wernick M N, Chapman D 2003 J. Phys. D: Appl. Phys. 36 2152Google Scholar

    [22]

    钱晓凡 2015 信息光学数字实验室 (Matlab版) (北京: 科学出版社) 第036039页

    Qian X F 2015 Information Optics Digital Laboratory (Matlab Ed.) p036039(Beijing: Science Press) (in Chinese)

    [23]

    王振天 2010 博士论文 (北京: 清华大学)

    Wang Z T 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [24]

    Huang Z F, Kang K J, Zhang L, Chen Z Q, Ding F, Wang Z T, Fang Q G 2009 Phys. Rev. A 79 013815Google Scholar

  • 图 1  基于免分析光栅X射线相位衬度成像系统的装置成像示意图

    Figure 1.  Schematic imaging diagram of the phase contrast imaging system without analyser grating.

    图 2  由采集到的投影图像组成的N张新投影图像中同一像素点的光强随X射线的偏折角$\psi = {{{x_{\rm{g}}}} / D}$的变化曲线(角度曲线)

    Figure 2.  Plot of the new images’ intensity oscillation (shifting curve) of single pixel as a function of the deviation angle $\psi = {{{x_{\rm{g}}}} / D}$.

    图 3  模拟所用的样品示意图. 样品由直径为0.461 mm PMMA圆柱状和PMMA后不同厚度(0—3层)的纸组成, 其中PMMA圆柱状对X光具有吸收和折射效应, 而纸张对X光只有散射效应

    Figure 3.  Schematic diagram of the simulation sample. The simulation sample has a 0.46 mm diameter PMMA cylinder that combined refraction and absorption effects. The PMMA cylinder overlie paper layers (0−3 layers) that exhibit the scattering effects.

    图 4  探测器上的样品投影图 (a) 探测器像素尺寸为0.60 μm (α = 0)时模拟样品的投影图像; (b) 图(a)的局部(红框内)放大图; (c) 探测器像素尺寸为0.66 μm (α ≠ 0)时模拟样品的投影图像; (d) 图(c)的局部放大图

    Figure 4.  The projective images of the simulation sample: (a) The projective image of the simulation sample with pixel size of 0.60 μm (α = 0); (b) local enlarged drawing of Fig. (a); (c) the projective image of the simulation sample with pixel size of 0.66 μm (α ≠ 0); (d) local enlarged drawing of Fig. (c).

    图 5  由原始的样品投影图组成的4张新图像 (a)—(d) 探测器像素尺寸为0.60 μm (α = 0)时所得到的4张新投影图; (e)—(h) 探测器像素尺寸为0.66 μm ($\alpha \ne {\rm{0}}$)时所得到的4张新投影图

    Figure 5.  Four new images extracted from one original projective image: (a)−d) Contain four new images with the pixel size of 0.60 μm (α = 0); (e)−(h) contain four new images with the pixel size of 0.66 μm (α ≠ 0).

    图 6  探测器像素尺寸为0.60 μm时模拟样品的信息提取结果 (a)—(c) PS算法时提取的吸收、折射和散射信息; (d)—(f) LS算法时提取的吸收、折射和散射信息; (g)—(i) 在虚线位置处(PS算法(绿色)和LS算法(紫色))的提取的吸收、折射和散射信息与理论值(蓝色)的对比图

    Figure 6.  Sample information extracted with pixel size of 0.60 μm: (a)−(c) Depict the absorption, refraction and scattering information of the simulated sample obtained by PS algorithm; (d)−(f) depict the absorption, refraction and scattering information obtained by LS algorithm; (g)−(i) are profiles of the absorption, refraction and scattering images extracted by LS (purple) and PS (green) at the dotted lines in (a)−(f), as well as the theoretical values (blue).

    图 7  探测器像素尺寸为0.66 μm时模拟用样品的信息提取结果 (a)—(c) PS算法时提取的吸收、折射和散射信息; (d)—(f) LS算法时提取的吸收、折射和散射信息; (g)—(i) 在虚线位置处(PS算法(绿色)和LS算法(紫色))的提取的吸收、折射和散射信息与理论值(蓝色)的对比图

    Figure 7.  Sample information extracted with pixel size of 0.66 μm: (a)−(c) Depict the absorption, refraction and scattering information of the simulated sample obtained by PS algorithm; (d)−(f) depict the absorption, refraction and scattering information obtained by LS algorithm; (g)−(i) are profiles of the absorption, refraction and scattering images extracted by LS (purple) and PS (green) at the dotted lines in Fig. (a)−(f), as well as the theoretical values (blue).

    图 8  不同像素尺寸的探测器提取样品的吸收、折射和散射信息 (a)—(c) 利用PS算法提取的样品吸收、折射和散射信息的强度曲线; (d)—(f) 利用LS算法提取的样品吸收、折射和散射信息的强度曲线

    Figure 8.  The absorption, refraction, and scattering information of the simulated sample with different pixel sizes: (a)−(c) Depict the profiles of extracted absorption, refraction and scattering images with different pixel sizes by PS algorithm; (d)−(f) depict the profiles of extracted absorption, refraction and scattering images with different pixel sizes by LS algorithm.

    表 1  PS和LS算法的理论值和提取值的平均绝对误差

    Table 1.  Mean absolute error of theoretical and extracted information by PS and LS algorithm.

    探测器的
    像素尺寸
    M/${10^{ - 4}}$$\theta $/${10^{ - 9}}\;{\rm{ rad}}$${\sigma ^2}/{10^{ - 13}}\;{\rm{ ra}}{{\rm{d}}^{\rm{2}}}$
    PSLSPSLSPSLS
    0.60 μm2.102.104.534.531.361.36
    0.66 μm43.006.08115.9213.8035.805.90
    DownLoad: CSV
  • [1]

    Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K, Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866Google Scholar

    [2]

    Pfeiffer F, Weitkamp T, Bunk O, David C 2006 Nat. Phys. 2 258Google Scholar

    [3]

    Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F, Stampanoni M 2010 P. Natl Acad. Sci. USA. 107 13576Google Scholar

    [4]

    Endrizzi M, Astolfo A, Vittoria F A, Millard T P, Olivo A 2016 Sci. Rep. 6 25466Google Scholar

    [5]

    Fu J, Shi X H, Guo W, Peng P 2019 Sci. Rep. 9 1113Google Scholar

    [6]

    Wei C X, Wu Z, Wali F, Wei W B, Bao Y, Luo R H, Wang L, Liu G, Tian Y C 2017 Chin. Phys. B 26 108701Google Scholar

    [7]

    Ge Y S, Li K, Garrett J, Chen G H 2014 Opt. Express 22 14246Google Scholar

    [8]

    Balles A, Fella C, Dittmann J, Wiest W, Zabler S, Hanke R 2016 XRM 2014: Proceedings of the 12th International Conference on X-Ray Microscopy Melbourne, Austalia, January 28, 2016 p020043

    [9]

    Marathe S, Zdora M C, Zanette I, Cipiccia S, Rau C 2017 Developments in X-ray Tomography XI San Diego, US, October 11, 2017 p103910S

    [10]

    Wen H H, Bennett E E, Kopace R, Stein A F, Pai V 2010 Opt. Lett. 35 1932Google Scholar

    [11]

    Bennett E E, Kopace R, Stein A F, Wen H 2010 Med. Phys. 37 6047Google Scholar

    [12]

    Berry M V, Klein S 1996 J. Mod. Opt. 43 2139Google Scholar

    [13]

    Wernick M N, Wirjadi O, Chapman D, Zhong Z, Galatsanos N P, Yang Y, Brankov J G, Oltulu O, Anastasio M A, Muehleman C 2003 Phys. Med. Biol. 48 3875Google Scholar

    [14]

    Li P, Zhang K, Bao Y, Ren Y, Ju Z, Wang Y, He Q, Zhu Z, Huang W, Yuan Q 2016 Opt. Express 24 5829Google Scholar

    [15]

    Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E 2005 Opt. Express 13 6296Google Scholar

    [16]

    Diemoz P C, Coan P, Zanette I, Bravin A, Lang S, Glaser C, Weitkamp T 2011 Opt. Express 19 1691Google Scholar

    [17]

    Chou C Y, Anastasio M A, Brankov J G, Wernick M N, Brey E M, Connor Jr D M, Zhong Z 2007 Phys. Med. Biol. 52 1923Google Scholar

    [18]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Brönnimann C, Grünzweig C, David C 2008 Nat. Mater. 7 134Google Scholar

    [19]

    Wang Z T, Kang K J, Huang Z F, Chen Z Q 2009 Appl. Phys. Lett. 95 094105Google Scholar

    [20]

    Momose A, Yashiro W, Takeda Y, Suzuki Y, Hattori T 2006 Jpn. J. Appl. Phys. 45 5254Google Scholar

    [21]

    Oltulu O, Zhong Z, Hasnah M, Wernick M N, Chapman D 2003 J. Phys. D: Appl. Phys. 36 2152Google Scholar

    [22]

    钱晓凡 2015 信息光学数字实验室 (Matlab版) (北京: 科学出版社) 第036039页

    Qian X F 2015 Information Optics Digital Laboratory (Matlab Ed.) p036039(Beijing: Science Press) (in Chinese)

    [23]

    王振天 2010 博士论文 (北京: 清华大学)

    Wang Z T 2010 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese)

    [24]

    Huang Z F, Kang K J, Zhang L, Chen Z Q, Ding F, Wang Z T, Fang Q G 2009 Phys. Rev. A 79 013815Google Scholar

  • [1] Chen Zi-Han, Song Meng-Qi, Chen Heng, Wang Zhi-Li. Fringe visibility in X-ray interferometer using dual triangular phase gratings. Acta Physica Sinica, 2023, 72(14): 148701. doi: 10.7498/aps.72.20230461
    [2] Yang Jun, Wu Hao, Luo Kun-Hao, Guo Jin-Chuan, Zong Fang-Ke. Suppression of artifacts in X-ray phase-contrast images retrieved by Fourier transform. Acta Physica Sinica, 2021, 70(10): 104101. doi: 10.7498/aps.70.20201781
    [3] Sun Shi-Feng. High-resolution coded aperture X-ray fluorescence imaging with separable masks. Acta Physica Sinica, 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [4] Qi Jun-Cheng, Chen Rong-Chang, Liu Bin, Chen Ping, Du Guo-Hao, Xiao Ti-Qiao. Grating based X-ray phase contrast CT imaging with iterative reconstruction algorithm. Acta Physica Sinica, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [5] Rong Feng, Xie Yan-Na, Tai Xue-Feng, Geng Lei. Research on dual energy grating based X-ray phase contrast imaging. Acta Physica Sinica, 2017, 66(1): 018701. doi: 10.7498/aps.66.018701
    [6] Du Yang, Liu Xin, Lei Yao-Hu, Huang Jian-Heng, Zhao Zhi-Gang, Lin Dan-Ying, Guo Jin-Chuan, Li Ji, Niu Han-Ben. Quantitative analysis of the field of view for X-ray differential phase contrast imaging. Acta Physica Sinica, 2016, 65(5): 058701. doi: 10.7498/aps.65.058701
    [7] Huang Jian-Heng, Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Noise analysis of hard X-ray differential phasecontrast imaging. Acta Physica Sinica, 2014, 63(16): 168702. doi: 10.7498/aps.63.168702
    [8] Du Yang, Lei Yao-Hu, Liu Xin, Guo Jin-Chuan, Niu Han-Ben. Theoretical and experimental study of two-phase-stepping approach for hard X-ray differential phase contrast imaging. Acta Physica Sinica, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [9] Yan Ji, Jiang Shao-En, Su Ming, Wu Shun-Chao, Lin Zhi-Wei. The application of phase contrast imaging to ICF multi-shell capsule diagnosis. Acta Physica Sinica, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [10] Yang Qiang, Liu Xin, Guo Jin-Chuan, Lei Yao-Hu, Huang Jian-Heng, Niu Han-Ben. Experimental study of X-ray phase contrast imaging without absorbing grating. Acta Physica Sinica, 2012, 61(16): 160702. doi: 10.7498/aps.61.160702
    [11] Cheng Guan-Xiao, Hu Chao. X-ray Zernike apodized photon sieves for phase-contrast microscopy. Acta Physica Sinica, 2011, 60(8): 080703. doi: 10.7498/aps.60.080703
    [12] Li Yi-Yu, Wang Yuan-Yuan, Chen Hao, Zhu De-Xi, Hu Chuan, Qu Jia. Polarization dependent phase grating based on two-dimensional structured thin films. Acta Physica Sinica, 2010, 59(7): 5110-5115. doi: 10.7498/aps.59.5110
    [13] Liu Xin, Lei Yao-Hu, Zhao Zhi-Gang, Guo Jin-Chuan, Niu Han-Ben. Design and fabrication of hard X-ray phase grating. Acta Physica Sinica, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [14] Hu Chun-Hong, Li Hui, Luo Shu-Qian, Wang Xue-Yan, Zhang Lu. The study of information extraction based on diffraction enhanced imaging. Acta Physica Sinica, 2009, 58(4): 2423-2429. doi: 10.7498/aps.58.2423
    [15] Chen Bo, Zhu Pei_Ping, Liu Yi-Jin, Wang Jun-Yue, Yuan Qing_Xi, Huang Wan_Xia, Ming Hai, Wu Zi-Yu. Theory and method of X_ray grating phase contrast imaging. Acta Physica Sinica, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [16] Ji Xian-Ming, Xu Shu-Wu, Lu Jun-Fa, Xu Dong-Mei, Yin Jian-Ping. Generation of an adjustable double-well optical trap by shift phase gratings. Acta Physica Sinica, 2008, 57(12): 7591-7599. doi: 10.7498/aps.57.7591
    [17] Liu Li-Xiang, Du Guo-Hao, Hu Wen, Luo Yu-Yu, Xie Hong-Lan, Chen Min, Xiao Ti-Qiao. Application of quantitative imaging to elimination of scattering effect on X-ray in-line outline imaging. Acta Physica Sinica, 2006, 55(12): 6387-6394. doi: 10.7498/aps.55.6387
    [18] Yu Bin, Peng Xiang, Tian Jin-Dong, Niu Han-Ben. Phase retrieval for hard x-ray in-line phase contrast imaging. Acta Physica Sinica, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
    [19] Chen Min, Xiao Ti-Qiao, Luo Yu-Yu, Liu Li-Xiang, Wei Xun, Du Guo-Hao, Xu Hong-Jie. Phase-contrast imaging with microfocus x-ray source. Acta Physica Sinica, 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [20] D.C.GAO, A.POGANY, A.W.STEVENSON, T.GUREYEV, S.W.WILKINS, MAI ZHEN-HONG. HARD X-RAY PHASE-CONTRAST IMAGING. Acta Physica Sinica, 2000, 49(12): 2357-2368. doi: 10.7498/aps.49.2357
Metrics
  • Abstract views:  4144
  • PDF Downloads:  107
  • Cited By: 0
Publishing process
  • Received Date:  22 July 2020
  • Accepted Date:  15 September 2020
  • Available Online:  03 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回