Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A type of X-ray diffractometer with adaptive X-ray spot sizes

Liu Jun Jiang Qi-Li Shuai Qi-Lin Li Rong-Wu Pan Qiu-Li Cheng Lin Wang Rong

Citation:

A type of X-ray diffractometer with adaptive X-ray spot sizes

Liu Jun, Jiang Qi-Li, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin, Wang Rong
PDF
HTML
Get Citation
  • In order to realize micron scale to millimeter scale phase structure analysis, as well as accurate phase structure analysis of surface uneven samples, X-ray diffractometer named Hawk-II, which can adaptively adjust the diameter of irradiated X-ray beam spot according to the diameter of internal tangential circle at the measured point, is developed by combining X-ray diffraction technology, CCD camera imaging technology and slightly-focusing ploycapillary X-ray control technology. The X-ray source system, six-dimensional linkage motion system, CCD camera, detection system and control system based on LabVIEW are the main components of the Hawk-II. Compared with the 3°–5° divergence of the conventional X-ray source, the divergence of the X-ray emitted by the slightly-focusing polycapillary X-ray optics is only about 0.15° and also the intensity within the beam spot range is dozens of times stronger. Therefore, the shift of peak position will not appear due to the pores, curvature or uneven surface of the sample, when Hawk-II is used to analyze the samples with irregular surface. The diffraction pattern of the uneven Ren Min Bi five-cent coin are collected in the Hawk-II and PANalytical X-Pert Pro MPD conventional X-ray diffractometer respectively. By comparing the analysis results, it is found that the diffraction peaks measured by the X-Pert Pro MPD are shifted seriously, with a maximum deviation angle of 0.52°. While the diffraction peaks detected by the Hawk-II are basically consistent with the data from the standard PDF card, which verifies the advantages of the analysis of irregular samples by the Hawk-II. In order to explore the difference between different beam spots used for analysis at the same point, red and green porcelain fired in Qing dynasty and GaAs-based Cu and Fe plated films are analyzed by the Hawk-II. It is found that when the samples are relatively uniform, the intensities of diffraction peaks of different beam spots are relatively close, while when the samples are not uniform, the diffraction peaks vary greatly. Especially, some microcrystalline phases can be detected only with large beam spots. In addition, to verify the adaptive functionality of the Hawk-II, a bronze from the Western Han Dynasty, with different rust spots on it, is tested. It is found that the Hawk-II can adjust the beam spot size according to the different corrosion points, making the irradiation area coincide with the area to be analysed and the phase structure detected more accurately. Therefore, the Hawk-II is a general purpose X-ray diffractometer, which has the analytical capability from micron scale to millimeter scale and the energy dispersive X-ray fluorescence analysis function. Moreover, it has the advantages of the accurate analysis of irregular samples, fast detection speed, simple operation, etc. Based on the above analysis, the Hawk-II will be widely used in different fields.
      Corresponding author: Cheng Lin, chenglin@bnu.edu.cn ; Wang Rong, wangr@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.12075028)
    [1]

    Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114

    [2]

    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16

    [3]

    Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng., B 206 69

    [4]

    Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697

    [5]

    Liu Z, Jia C, Li L, Li X L, Ji L Y, Wang L H, Lei Y, Wei X J 2018 J. Amer. Chem. Soc. 101 5229Google Scholar

    [6]

    Gordillo-Cruz E, Alvarez-Ramirez J, González F, Reyes J A 2018 Physica A 512 635

    [7]

    Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143

    [8]

    Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar

    [9]

    姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳 2019 物理学报 68 124Google Scholar

    Jiang Q L, Duan Z M, Shuai Q L, Li R W, Pan Q L, Cheng L 2019 Acta Phys. Sin. 68 124Google Scholar

    [10]

    Noyan I C, Wang P C, Kaldor S K, Jordan-Sweet J L, Liniger E G 2000 Rev. Sci. Instrum. 71 1991

    [11]

    陈俊, 赫业军, 李玉德, 魏富忠, 王大椿, 罗萍, 颜一鸣 1999 核技术 22 3Google Scholar

    Chen J, He Y J, Li Y D, Wei F Z, Wang D C, Luo P, Yan Y M 1999 Nucl. Tech. 22 3Google Scholar

    [12]

    Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar

    [13]

    Alfeld M, Janssens K, Dik J, Nolf W, Snickt G 2011 J. Anal. Atom. Spect. 26 899Google Scholar

    [14]

    段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar

    [15]

    Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 1493Google Scholar

    [16]

    徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar

    Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar

    [17]

    Yang J, Tsuji K C, Lin X Y, Han D Y, Ding X L 2009 Thin Solid Films 517 3357Google Scholar

    [18]

    罗武干, 秦颍, 黄凤春, 胡雅丽, 王昌燧 2007 腐蚀科学与防护技术 19 157Google Scholar

    Luo W G, Qin Y, Huang F C, Hu Y L, Wang C S 2007 Corros. Sci. Prot. Technol. 19 157Google Scholar

    [19]

    金普军, 秦颍, 龚明, 李涛, 朱铁权, 胡雅丽, 王昌燧 2007 中国腐蚀与防护学报 27 162Google Scholar

    Jin P J, Qin Y, Gong M, Li T, Zhu T Q, Hu Y L, Wang C S 2007 Corros. Sci. Prot. Technol. 27 162Google Scholar

    [20]

    Bastidas J M, Alonso M P, Mora E M, Chico B 1995 Mater. Corros. 46 515

    [21]

    钟家让 2004 山西大学学报(自然科学版) 27 47Google Scholar

    Zhong J R 2004 J. Shanxi Univ. (Nat. Sci. Ed.) 27 47Google Scholar

    [22]

    祝鸿范, 周浩 1999 电化学 5 314Google Scholar

    Zhu H F, Zhou H 1999 Electrochemistry 5 314Google Scholar

    [23]

    周浩, 祝鸿范, 蔡兰坤 2005 文物保护与考古科学 17 22Google Scholar

    Zhou H, Zhu H F, Cai L K 2005 Sci. Conserv. Archaeol 17 22Google Scholar

  • 图 1  透镜束斑大小(FWHM)与探测点到透镜出口端距离(F)之间的关系

    Figure 1.  The FWHM of X-ray beam spots varied with the distances (F) from the measured spots to the exit of polycapillary X-ray optics.

    图 2  毛细管微会聚X光透镜聚焦X射线的束斑变化示意图

    Figure 2.  Diagram of changes in beam spot size of X-ray focus by the slightly-focusing polycapillary X-ray optics.

    图 3  点光源的自适应束斑X射线衍射仪(Hawk-II)结构示意图

    Figure 3.  The schematic diagram of adaptive beam spot X-ray diffractometer with point source (Hawk-II).

    图 4  加Ni吸收片和不加Ni吸收片两种条件下的X射线散射谱

    Figure 4.  X-ray scattering spectra with and without Ni filter.

    图 5  Si (1 1 1), Si (4 0 0)和GaAs (4 1 1)的衍射图

    Figure 5.  The XRD patterns of Si (1 1 1), Si (4 0 0) and GaAs (4 1 1) crystals.

    图 6  人民币五角硬币及其测试点

    Figure 6.  The RMB 5 Jiao coin and the detected point.

    图 7  两种衍射仪测量人民币五角硬币的衍射图

    Figure 7.  The XRD patterns of the RMB 5 Jiao coin measured by two kinds of diffractometers.

    图 8  清代红绿彩瓷白釉不同照射束斑的衍射图对比

    Figure 8.  The comparison of XRD patterns of Qing Dynasty red and green porcelain white glaze with different beam spots.

    图 9  GaAs为基底表面镀Cu和Fe的纳米薄膜在不同照射束斑下的衍射图对比

    Figure 9.  The comparison of XRD patterns of GaAs based Cu and Fe plated film with different beam spots.

    图 10  西汉青铜及其测试点

    Figure 10.  A piece of bronze produced in western Han Dynasty and the detected points.

    图 11  西汉青铜表面锈蚀区域和截面的XRD图

    Figure 11.  XRD patterns of corrosion area and section of bronze surface of Western Han Dynasty.

    表 1  Si (1 1 1), Si (4 0 0)和GaAs (4 1 1)的测量数据对比

    Table 1.  The comparison of measurement data of Si (1 1 1), Si (4 0 0) and GaAs (4 1 1).

    参考数据 测量数据
    PDF卡2θ/(°)(h k l) 2θ/(°)
    Si(JCPDS 75-0590)28.443(1 1 1) 28.441
    Si(JCPDS 75-0590)69.131(4 0 0) 69.136
    GaAs(JCPDS 29-0615)90.141(5 1 1) 90.132
    DownLoad: CSV

    表 2  两种衍射仪的实验条件对比

    Table 2.  Measurement conditions of two diffractometers.

    Hawk-IIX-pert-pro-MPD
    靶材料CuCu
    单色器Ni吸收片Ni吸收片
    束斑尺寸/mm1.3 × 1.31 × 10
    电压/kV4040
    电流/mA4040
    步距角/(°)0.150.03
    探测时间/s220
    DownLoad: CSV

    表 3  各探测点的X射线束斑直径

    Table 3.  X-ray Beam diameter of each detected points.

    锈蚀点照射X射线束斑直径/μm
    绿锈1300
    红锈680
    黑锈1000
    截面800
    DownLoad: CSV
  • [1]

    Dikmen G, Alver Ö, Parlak C 2018 Chem. Phys. Lett. 698 114

    [2]

    Zhou X, Liu D, Bu H, Deng L, Liu H, Yuan P, Du P, Song H 2018 Solid Earth 3 16

    [3]

    Thota S, Kashyap S C, Sharma S K, Reddy V R 2016 Mater. Sci. Eng., B 206 69

    [4]

    Dappe V, Uzu G, Schreck E, Wu L, Li X, Dumat C, Moreau M, Hanoune B, Ro C, Sobanska S 2018 Atmos. Pollut. Res. 9 697

    [5]

    Liu Z, Jia C, Li L, Li X L, Ji L Y, Wang L H, Lei Y, Wei X J 2018 J. Amer. Chem. Soc. 101 5229Google Scholar

    [6]

    Gordillo-Cruz E, Alvarez-Ramirez J, González F, Reyes J A 2018 Physica A 512 635

    [7]

    Myoung J H, Lee D R, Sung H I, Jeong A Y, Chang Y S, Kim H J, Sun W J, Young W C, Young T H, Myung J K 2018 Eur. J. Pharm. Biopharm. 130 143

    [8]

    Nakai I, Abe Y 2012 Appl. Phys. A 106 279Google Scholar

    [9]

    姜其立, 段泽明, 帅麒麟, 李融武, 潘秋丽, 程琳 2019 物理学报 68 124Google Scholar

    Jiang Q L, Duan Z M, Shuai Q L, Li R W, Pan Q L, Cheng L 2019 Acta Phys. Sin. 68 124Google Scholar

    [10]

    Noyan I C, Wang P C, Kaldor S K, Jordan-Sweet J L, Liniger E G 2000 Rev. Sci. Instrum. 71 1991

    [11]

    陈俊, 赫业军, 李玉德, 魏富忠, 王大椿, 罗萍, 颜一鸣 1999 核技术 22 3Google Scholar

    Chen J, He Y J, Li Y D, Wei F Z, Wang D C, Luo P, Yan Y M 1999 Nucl. Tech. 22 3Google Scholar

    [12]

    Pradell T, Molera J, Salvadó N, Labrador A 2010 Appl. Phys. A 99 407Google Scholar

    [13]

    Alfeld M, Janssens K, Dik J, Nolf W, Snickt G 2011 J. Anal. Atom. Spect. 26 899Google Scholar

    [14]

    段泽明, 刘俊, 姜其立, 潘秋丽, 李融武, 程琳 2019 光谱学与光谱分析 39 303Google Scholar

    Duan Z M, Liu J, Jiang Q L, Pan Q L, Li R W, Cheng L 2019 Spectroscopy and Spectral Analysis 39 303Google Scholar

    [15]

    Hodoroaba V D, Radtke M, Reinholz U, Riesemeier H, Vincze L, Reuter D 2011 Nucl. Instrum. Methods Phys. Res., Sect. B 269 1493Google Scholar

    [16]

    徐晓明, 苗伟, 陶琨 2014 物理学报 63 136001Google Scholar

    Xu X M, Miao W, Tao K 2014 Acta Phys. Sin. 63 136001Google Scholar

    [17]

    Yang J, Tsuji K C, Lin X Y, Han D Y, Ding X L 2009 Thin Solid Films 517 3357Google Scholar

    [18]

    罗武干, 秦颍, 黄凤春, 胡雅丽, 王昌燧 2007 腐蚀科学与防护技术 19 157Google Scholar

    Luo W G, Qin Y, Huang F C, Hu Y L, Wang C S 2007 Corros. Sci. Prot. Technol. 19 157Google Scholar

    [19]

    金普军, 秦颍, 龚明, 李涛, 朱铁权, 胡雅丽, 王昌燧 2007 中国腐蚀与防护学报 27 162Google Scholar

    Jin P J, Qin Y, Gong M, Li T, Zhu T Q, Hu Y L, Wang C S 2007 Corros. Sci. Prot. Technol. 27 162Google Scholar

    [20]

    Bastidas J M, Alonso M P, Mora E M, Chico B 1995 Mater. Corros. 46 515

    [21]

    钟家让 2004 山西大学学报(自然科学版) 27 47Google Scholar

    Zhong J R 2004 J. Shanxi Univ. (Nat. Sci. Ed.) 27 47Google Scholar

    [22]

    祝鸿范, 周浩 1999 电化学 5 314Google Scholar

    Zhu H F, Zhou H 1999 Electrochemistry 5 314Google Scholar

    [23]

    周浩, 祝鸿范, 蔡兰坤 2005 文物保护与考古科学 17 22Google Scholar

    Zhou H, Zhu H F, Cai L K 2005 Sci. Conserv. Archaeol 17 22Google Scholar

  • [1] Hua Ying-Xin, Chen Xiao-Hui, Li Jun, Hao Long, Sun Yi, Wang Yu-Feng, Geng Hua-Yun. In situ X-ray diffraction measurement of shock melting in vanadium. Acta Physica Sinica, 2022, 71(7): 076201. doi: 10.7498/aps.71.20212065
    [2] Ma Yong-Jun, Li Rui-Xuan, Li Kui, Zhang Guang-Yin, Niu Jin, Ma Yun-Feng, Ke Chang-Jun, Bao Jie, Chen Ying-Shuang, Lü Chun, Li Jie, Fan Zhong-Wei, Zhang Xiao-Shi. Three-dimensional nano-coherent diffraction imaging technology based on high order harmonic X-ray sources. Acta Physica Sinica, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] Zhao Chang-Zhe, Si Shang-Yu, Zhang Hai-Peng, Xue Lian, Li Zhong-Liang, Xiao Ti-Qiao. Beam splitting characteristics of crystal X-ray Laue diffraction. Acta Physica Sinica, 2022, 71(4): 046101. doi: 10.7498/aps.71.20211674
    [4] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [5] Zhang Shuo, Cui Wei, Jin Hai, Chen Liu-Biao, Wang Jun-Jie, Wu Wen-Tao, Wu Bing-Jun, Xia Jing-Kai, Song Yan-Ru, Yang Jin-Ping, Weng Tsu-Chien, Liu Zhi. Development of basic theory and application of cryogenic X-ray spectrometer in light sources and X-ray satellite. Acta Physica Sinica, 2021, 70(18): 180702. doi: 10.7498/aps.70.20210350
    [6] Beam splitting characteristics of crystal X-ray Laue diffraction. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211674
    [7] Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie. Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF. Acta Physica Sinica, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [8] Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin. A new type of micro-X-ray diffractometer focused by polycapillary optics. Acta Physica Sinica, 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [9] Liu Xin, Yi Ming-Hao, Guo Jin-Chuan. Line focal X-ray source imaging. Acta Physica Sinica, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [10] Xu Xiao-Ming, Miao Wei, Tao Kun. Study on the effect of X-ray diffractometer inherent angle scale error on the precision of lattice parameter calculation. Acta Physica Sinica, 2014, 63(13): 136001. doi: 10.7498/aps.63.136001
    [11] Li Hong-Tao, Luo Yi, Xi Guang-Yi, Wang Lai, Jiang Yang, Zhao Wei, Han Yan-Jun, Hao Zhi-Biao, Sun Chang-Zheng. Thickness measurement of GaN films by X-ray diffraction. Acta Physica Sinica, 2008, 57(11): 7119-7125. doi: 10.7498/aps.57.7119
    [12] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
    [13] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [14] Xu Qiang, Wang Jian-Bao, Yuan Jian, Lu Fang, Sun Heng-Hui. . Acta Physica Sinica, 1995, 44(3): 432-438. doi: 10.7498/aps.44.432
    [15] ZHANG JIAN-ZHONG, CAO YAN-NI. SIMULATION STUDY OF DIVERGENT BEAM X-RAY DIFFRACTION BY CRYSTALS. Acta Physica Sinica, 1990, 39(1): 124-128. doi: 10.7498/aps.39.124
    [16] TIAN LIANG-GUANG, LIU XIANG-LIN, XU SHUN-SHENG, HAN XIAO-XI. X RAY DOUBLE CRYSTAL DIFFRACTION STUDY OF (BiTm)3(FeGa)5O12 MAGNETIC GARNET FILMS GROWN BY LIQUID PHASE EPITAXY. Acta Physica Sinica, 1989, 38(10): 1704-1709. doi: 10.7498/aps.38.1704
    [17] SUN ZhANG-DE. SOLVING THE EQUATION OF X-RAY DIFFRACTION BY GREEN'S FUNCTION. Acta Physica Sinica, 1983, 32(8): 982-989. doi: 10.7498/aps.32.982
    [18] XU JI-AN, HU JING-ZHU. X-RAY DIFFRACTION UNDER HIGH PRESSURE. Acta Physica Sinica, 1977, 26(6): 521-525. doi: 10.7498/aps.26.521
    [19] WU TE-CHAN, WANG JEN-HUI. THE THERMAL DIFFUSE X-RAY SCATTERING AND ELASTIC CONSTANTS OF ZINC. Acta Physica Sinica, 1966, 22(5): 533-540. doi: 10.7498/aps.22.533
    [20] CHEN CHI. THE INFLUENCE OF WORKING CONDITIONS OF X-RAY DIFFRACTOMETER ON THE POSITION OF THE CENTRE OF GRAVITY,THE MEAN-SQUARE WIDTH AND THE PROFILE OF INTERFERENCE LINES. Acta Physica Sinica, 1961, 17(10): 465-481. doi: 10.7498/aps.17.465
Metrics
  • Abstract views:  5640
  • PDF Downloads:  79
  • Cited By: 0
Publishing process
  • Received Date:  31 July 2020
  • Accepted Date:  28 August 2020
  • Available Online:  19 December 2020
  • Published Online:  05 January 2021

/

返回文章
返回