Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rayleigh-Bloch mode based monolayer bend waveguide

Gao Dong-Bao Zhu Ji-Lin Zhang Sai Zhou He-Feng Zeng Xin-Wu

Citation:

Rayleigh-Bloch mode based monolayer bend waveguide

Gao Dong-Bao, Zhu Ji-Lin, Zhang Sai, Zhou He-Feng, Zeng Xin-Wu
PDF
HTML
Get Citation
  • A monolayer bend waveguide is designed based on the features of Rayleigh-Bloch (RB) mode wave in one-dimensional diffraction grating. The feasibility that the RB mode wave can transmit along the bend waveguide is demonstrated by the time-domain and frequency-domain finite element method, respectively. The results show that two different modes of transmission wave exist because of employing the circled unit cells. They possess different acoustical energy localization positions. In mode-1, the energy is localized between unit cells. In mode-2, the energy is localized in the center of unit cell, therefore, acoustic wave transmits with nearly no loss. Modulated sinusoidal wave and Gaussian pulse wave are used in the time-domain investigation. Because only RB mode waves can transmit and different modes have different energy distributions, the bend waveguide acts as an acoustic filter for the broadband waves. This study is conducive to the acoustic wave directional transmission, acoustic signal detection and identification.
      Corresponding author: Gao Dong-Bao, gaodongbao@nudt.edu.cn ; Zeng Xin-Wu, xinwuzeng@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504425, 11904406) and the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40335)
    [1]

    Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V 2004 Appl. Phys. Lett. 84 4400Google Scholar

    [2]

    Wu L Y, Chiang R Y, Tsai C N, Wu M L, Chen L W 2012 Appl. Phys. A 109 523Google Scholar

    [3]

    Liu F M, Huang X Q, Chang C T 2012 Appl. Phys. Lett. 100 071911Google Scholar

    [4]

    王一鹤, 张志旺, 程营, 刘晓峻 2019 物理学报 68 227805Google Scholar

    Wang Y H, Zhang Z W, Cheng Y, Liu X J 2019 Acta Phys. Sin. 68 227805Google Scholar

    [5]

    Gulyaev Y V, Plesski V P 1989 Sov. Phys. Usp. 32 51Google Scholar

    [6]

    Evans D V, Porter R 1999 J. Engine Math. 35 149Google Scholar

    [7]

    Thompson I, Linton C M 2010 SIAM J. Appl. Math. 70 2975Google Scholar

    [8]

    Evans D V, Porter R 2002 Q. J. Mech. Appl. Math. 55 481Google Scholar

    [9]

    Linton C M, McIver M 2002 J. Fluid Mech. 470 85Google Scholar

    [10]

    Bennetts L G, Peter M A, Montiel F 2017 J. Fluid Mech. 813 508Google Scholar

    [11]

    Evans D V, Linton C M 1993 Q. J. Mech. Appl. Math. 46 643Google Scholar

    [12]

    Atalar A, Koymen H, Oguz H K 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 2139Google Scholar

    [13]

    Colquitt D J, Craster R V, Antonakakis T, Guenneau S 2015 Proc. R. Soc. London, Ser. A 471 20140465Google Scholar

    [14]

    Hurd R A 1954 Can. J. Phys. 32 727Google Scholar

    [15]

    Li C H, Ke M Z, Zhang S W, Peng S S, Qiu C Y, Liu Z Y 2016 J. Phys. D: Appl. Phys. 49 125304Google Scholar

    [16]

    Zhao D G, Liu Z Y, Qiu C Y, He Z J, Cai F Y, Ke M Z 2007 Phys. Rev. B 76 144301Google Scholar

    [17]

    Chaplain G J, Makwana M P, Craster R V 2019 Wave Motion 86 162Google Scholar

    [18]

    Perter M A, Meylan M H 2007 J. Fluid Mech. 575 473Google Scholar

    [19]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [20]

    Berry M V 1975 J. Phys. A: Math. Gen. 8 1952Google Scholar

    [21]

    Boutin C, Rallu A, Hans S 2014 J. Mech. Phys. Solids 70 362Google Scholar

    [22]

    Antonakakis T, Craster R V 2012 Proc. R. Soc. London, Ser. A 468 1408Google Scholar

    [23]

    Craster R V, Kaplunov J, Pichugin A V 2010 Proc. R. Soc. London, Ser. A 466 2341Google Scholar

    [24]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar

    [25]

    Peng Y G, Shen Y X, Zhao D G, Zhu X F 2017 Appl. Phys. Lett. 110 173505Google Scholar

    [26]

    Peng Y G, Shen Y X, Geng Z G, Li P Q, Zhu J, Zhu X F 2020 Sci. Bull. 65 1022Google Scholar

  • 图 1  一维衍射声栅示意图

    Figure 1.  Schematic of one-dimensional diffraction grating.

    图 2  RB模式波矢图(a)及声压分布(b), (c)

    Figure 2.  Band structure of the scattering cluster (a) and acoustic pressure distributions (b), (c) of RB mode waves.

    图 3  散射体簇单元间(a)和单元内部(b)不同位置频谱分布

    Figure 3.  Frequency spectra of the points between (a) and in (b) the scattering clusters.

    图 4  弯曲波导中的RB模式声场(插图为相应波导局部声场分布结果) (a), (b)声压级分布; (c), (d)声压分布

    Figure 4.  RB mode acoustic wave fields in the bend waveguide: (a), (b) Sound pressure level (SPL) distributions; (c), (d) acoustic pressure distributions. The sub-pictures are local acoustic field distributions of corresponding gratings.

    图 5  不同模式下单元间(a)和单元内部(b)声压分布曲线

    Figure 5.  Acoustic pressure curves for the points between (a) and in (b) the cluster under different modes.

    图 6  (a)−(d)各单元内部点声压时域信号((a)所有时域信号结果; (b)−(d)第1, 20和40号单元时域信号结果)及(e)传输效率

    Figure 6.  (a)−(d) Time-domain signals ((a) all of the signals; (b)−(d) three signals at unit 1, 20 and 40, respectively) and (e) transmission efficiency for the points in the cluster.

    图 7  各单元点的频谱图

    Figure 7.  Frequency spectra for the points in the cluster.

    图 8  脉冲波入射时单元内部时域波形

    Figure 8.  Time-domain signals using Gaussian pulse incidence.

    图 9  高斯脉冲入射时单元内部(a)与单元间(b)信号频谱

    Figure 9.  Frequency spectra in (a) and between (b) the clusters using Gaussian pulse incidence

    表 1  散射体簇几何参数(单位: mm)

    Table 1.  Geometrical parameters of the scattering cluster (Unit: mm).

    rcR'Rθ单元个数N
    1022.52700/ππ/9046
    DownLoad: CSV
  • [1]

    Khelif A, Choujaa A, Benchabane S, Djafari-Rouhani B, Laude V 2004 Appl. Phys. Lett. 84 4400Google Scholar

    [2]

    Wu L Y, Chiang R Y, Tsai C N, Wu M L, Chen L W 2012 Appl. Phys. A 109 523Google Scholar

    [3]

    Liu F M, Huang X Q, Chang C T 2012 Appl. Phys. Lett. 100 071911Google Scholar

    [4]

    王一鹤, 张志旺, 程营, 刘晓峻 2019 物理学报 68 227805Google Scholar

    Wang Y H, Zhang Z W, Cheng Y, Liu X J 2019 Acta Phys. Sin. 68 227805Google Scholar

    [5]

    Gulyaev Y V, Plesski V P 1989 Sov. Phys. Usp. 32 51Google Scholar

    [6]

    Evans D V, Porter R 1999 J. Engine Math. 35 149Google Scholar

    [7]

    Thompson I, Linton C M 2010 SIAM J. Appl. Math. 70 2975Google Scholar

    [8]

    Evans D V, Porter R 2002 Q. J. Mech. Appl. Math. 55 481Google Scholar

    [9]

    Linton C M, McIver M 2002 J. Fluid Mech. 470 85Google Scholar

    [10]

    Bennetts L G, Peter M A, Montiel F 2017 J. Fluid Mech. 813 508Google Scholar

    [11]

    Evans D V, Linton C M 1993 Q. J. Mech. Appl. Math. 46 643Google Scholar

    [12]

    Atalar A, Koymen H, Oguz H K 2014 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61 2139Google Scholar

    [13]

    Colquitt D J, Craster R V, Antonakakis T, Guenneau S 2015 Proc. R. Soc. London, Ser. A 471 20140465Google Scholar

    [14]

    Hurd R A 1954 Can. J. Phys. 32 727Google Scholar

    [15]

    Li C H, Ke M Z, Zhang S W, Peng S S, Qiu C Y, Liu Z Y 2016 J. Phys. D: Appl. Phys. 49 125304Google Scholar

    [16]

    Zhao D G, Liu Z Y, Qiu C Y, He Z J, Cai F Y, Ke M Z 2007 Phys. Rev. B 76 144301Google Scholar

    [17]

    Chaplain G J, Makwana M P, Craster R V 2019 Wave Motion 86 162Google Scholar

    [18]

    Perter M A, Meylan M H 2007 J. Fluid Mech. 575 473Google Scholar

    [19]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [20]

    Berry M V 1975 J. Phys. A: Math. Gen. 8 1952Google Scholar

    [21]

    Boutin C, Rallu A, Hans S 2014 J. Mech. Phys. Solids 70 362Google Scholar

    [22]

    Antonakakis T, Craster R V 2012 Proc. R. Soc. London, Ser. A 468 1408Google Scholar

    [23]

    Craster R V, Kaplunov J, Pichugin A V 2010 Proc. R. Soc. London, Ser. A 466 2341Google Scholar

    [24]

    Peng Y G, Qin C Z, Zhao D G, Shen Y X, Xu X Y, Bao M, Jia H, Zhu X F 2016 Nat. Commun. 7 13368Google Scholar

    [25]

    Peng Y G, Shen Y X, Zhao D G, Zhu X F 2017 Appl. Phys. Lett. 110 173505Google Scholar

    [26]

    Peng Y G, Shen Y X, Geng Z G, Li P Q, Zhu J, Zhu X F 2020 Sci. Bull. 65 1022Google Scholar

Metrics
  • Abstract views:  4194
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  05 August 2020
  • Accepted Date:  21 September 2020
  • Available Online:  24 January 2021
  • Published Online:  05 February 2021

/

返回文章
返回