Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical study of picosecond anti-Stokes Raman frequency converter based on pump-probe method

Wang Cong Lü Dong-Xiang

Citation:

Theoretical study of picosecond anti-Stokes Raman frequency converter based on pump-probe method

Wang Cong, Lü Dong-Xiang
PDF
HTML
Get Citation
  • Ultra-short pulse (picosecond) anti-Stokes laser can be obtained by using Raman frequency converter in a crystal medium by the coherent anti-Stokes Raman scattering effect. The crystalline Raman frequency converter based on the pump-probe method can realize the collinear interaction of coherent anti-Stokes Raman scattering, thus effectively improving the conversion efficiency of the anti-Stokes light. Theoretical simulation is an important means to study laser operation. Coupled wave equation is widely used to study the characteristics of Raman laser and anti-Stokes laser. Although the coupling wave theory of anti-Stokes Raman frequency shifter reported previously can reflect the operation law of the frequency shifter, the optimization of the frequency shifter and the influence of the frequency shifter parameters on the output characteristics of anti-Stokes laser have not been reported so far. In this paper, the picosecond anti-Stokes Raman frequency converter based on the pump-probe method is studied theoretically. Considering the generation of the first Stokes light in the probe channel and the second Stokes light in the pump channel, the coupled wave equation of the collinear picosecond anti-Stokes Raman frequency converter is established under the plane wave approximation. Without loss of generality, four dimensionless comprehensive parameters are introduced to normalize the equations. A set of universal theoretical curves describing the operation of the Raman frequency converter is obtained. The numerical solutions of the equations show that the performance of the Raman frequency converter mainly depends on three parameters: the normalized phase mismatch parameter ΔK, the normalized Raman gain coefficient G, and the energy ratio of the probe light to the fundamental light rprobe. The reasonable values of normalized variables are determined when the high efficiency anti-Stokes conversion is realized. Experimental data are used to verify the correctness of the theoretical model. The theoretical value of the anti-Stokes conversion efficiency is basically consistent with the literature data. The normalized coupled wave theory proposed in this paper is helpful in understanding the operation law of the picosecond anti-Stokes Raman frequency shifter, and has guiding significance for the design of the frequency converter.
      Corresponding author: Wang Cong, wangc.sd@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504268) and the Scientific Research Program of Tianjin Municipal Education Commission, China (Grant No. 2017KJ240)
    [1]

    孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永 2020 物理学报 69 124201Google Scholar

    Sun Y L, Duan Y M, Cheng M Y, Yuan X Z, Zhang L, Zhang D, Zhu H Y 2020 Acta Phys. Sin. 69 124201Google Scholar

    [2]

    张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤 2018 物理学报 67 024206Google Scholar

    Zhang Y C, Fan L, Wei C F, Gu X M, Ren S X 2018 Acta Phys. Sin. 67 024206Google Scholar

    [3]

    Zhou Q Q, Shi S C, Chen S M, Duan Y M, Zhang X M, Guo J, Zhao B, Zhu H Y 2019 Chin. Phys. Lett. 36 014205Google Scholar

    [4]

    Sheng Q, Li R, Lee A J, Spence D J, Pask H M 2019 Opt. Express 27 8540Google Scholar

    [5]

    Wei L J, Chen M T, Zhu S Q, Dai S B, Yin H, Chen Z Q 2018 Laser Phys. Lett. 15 125001Google Scholar

    [6]

    Duan Y M, Sun Y L, Zhu H Y, Mao T W, Zhang L, Chen X 2020 Opt. Lett. 45 2564Google Scholar

    [7]

    Liu J, Ding X, Jiang P B, Sheng Q, Yu X Y, Sun B, Wang J B, Shi R, Zhao L, Bai Y T, Zhang G Z, Wu L, Yao J Q 2018 Appl. Opt. 57 3154Google Scholar

    [8]

    Ding S H, Zhang X Y, Wang Q P, Jia P, Zhang C, Liu B 2006 Opt. Commun. 267 480Google Scholar

    [9]

    Smetanin S N, Doroshenko M E, Ivleva L I, Jelínek M, V. Kubeček, Jelínková H 2014 Appl. Phys. B 117 225Google Scholar

    [10]

    Ding S H, Zhang X Y, Wang Q P, Zhang J, Wang S M, Liu Y R, Zhang X H 2007 J. Phys. D 40 2736

    [11]

    Smetanin S N, Jelínek M, Tereshchenko D P, Kubeček V 2018 Opt. Express 26 22637Google Scholar

    [12]

    Smetanin S N, Jelínek M, Kubeček V 2017 Appl. Phys. B 123 203

    [13]

    Vermeulen N, Debaes C, Fotiadi A A, Panajotov K, Thienpont H 2006 IEEE J. Quantum Electron. 42 1144Google Scholar

    [14]

    Grasiuk A Z, Kurbasov S V, Losev L L 2004 Opt. Commun. 240 239Google Scholar

    [15]

    Mildren R P, Coutts D W, Spence D J 2009 Opt. Express 17 810Google Scholar

    [16]

    Wang C, Zhang X Y, Wang Q P, Cong Z H, Liu Z J, Wei W, Wang W T, Wu Z G, Zhang Y G, Li L, Chen X H, Li P, Zhang H J, Ding S H 2013 Opt. Express 21 26014Google Scholar

    [17]

    Wang C, Cong Z H, Qin Z G, Zhang X Y, Wei W, Wang W T, Zhang Y G, Zhang H J, Yu H H 2014 Opt. Commun. 322 44Google Scholar

    [18]

    Wei W, Zhang X Y, Wang Q P, Wang C, Cong Z H, Chen X H, Liu Z J, Wang W T, Wu Z G, Ding S H, Tu C Y, Li Y F, Cheng W Y 2014 Appl. Phys. B 116 561

    [19]

    Smetanin S N, Jelínek M, Tereshchenko D P, Shukshin V E, Konyukhov M V, Papashvili A G, Voronina I S, Ivleva L I, Kubeček V 2020 Opt. Express 28 22919Google Scholar

    [20]

    Shen Y R, Bloembergen N 1965 Phys. Rev. 137 1787Google Scholar

  • 图 1  抽运通道和探测通道中的拉曼散射能级图 (a) 抽运通道的SSRS能级图; (b) 探测通道的CARS能级图; (c) 探测通道的SSRS能级图

    Figure 1.  Raman scattering energy levels in pump and probe channels: (a) SSRS in pump channel; (b) CARS in probe channel; (c) SSRS in probe channel.

    图 2  G = 90, Wp = 0.2, rprobe取不同值时(a) ηa, (b) η1s和(c) η2s随ΔK的变化

    Figure 2.  (a) ηa, (b) η1s and (c) η2s versus ΔK for different rprobe with G = 90 and Wp = 0.2.

    图 3  rprobe = 0.3, G = 90, Wp = 0.2时, 抽运光、探测光、一阶斯托克斯光和反斯托克斯光归一化光强随ζ的空间演化 (a) |ΔK| = 0; (b) |ΔK| = 4; (c) |ΔK| = 8

    Figure 3.  Plots of the spatial evolution of pump, probe, first Stokes, and anti-Stokes normalized intensities with rprobe = 0.3, G = 90 and Wp = 0.2: (a) |ΔK| = 0; (b) |ΔK| = 4; and (c) |ΔK| = 8.

    图 4  rprobe = 0.39, G = 90, Wp = 0.2时, 抽运光、探测光、一阶斯托克斯光和反斯托克斯光归一化光强随ζ的空间演化 (a) |ΔK| = 0; (b) |ΔK| = 4; (c) |ΔK| = 8

    Figure 4.  Plots of the spatial evolution of pump, probe, first Stokes, and anti-Stokes normalized intensities with rprobe = 0.39, G = 90 and Wp = 0.2: (a) |ΔK| = 0; (b) |ΔK| = 4; and (c) |ΔK| = 8.

    图 5  G = 90, |ΔK| = 0, Wp = 0.2时抽运光、探测光、一阶斯托克斯光、二阶斯托克斯光和反斯托克斯光的脉冲形状 (a) rprobe = 0.3; (b) rprobe = 0.39

    Figure 5.  Temporal profiles of the pump, probe, first Stokes, second Stokes and anti-Stokes pulses with G = 90, |ΔK| = 0 and Wp = 0.2: (a) rprobe = 0.3; (b) rprobe = 0.39.

    图 6  K| = 0, Wp = 0.2, rprobe取不同值时(a) ηa, (b) η1 s和(c) η2 sG的变化

    Figure 6.  (a) ηa, (b) η1s and (c) η2s versus G for different rprobe with |ΔK| = 0 and Wp = 0.2.

    图 7  K| = 0, Wp = 0.2时, roptηamaxG的变化

    Figure 7.  ropt and ηamax versus G with |ΔK| = 0 and Wp = 0.2

    图 8  K| = 0, Wp = 0.2时抽运光、探测光、一阶斯托克斯光、二阶斯托克斯光和反斯托克斯光的脉冲形状 (a) ropt = 0.270, G = 60; (b) ropt = 0.373, G = 110; (c) ropt = 0.414, G = 160

    Figure 8.  Temporal profiles of the pump, probe, first Stokes, second Stokes, and anti-Stokes pulses with |ΔK |= 0 and Wp = 0.2: (a) ropt = 0.270, G = 60; (b) ropt = 0.373, G = 110; (c) ropt = 0.414, G = 160.

    图 9  K| = 0, Wp = 0.2时, Goptηamaxrprobe的变化

    Figure 9.  Gopt and ηamax versus rprobe with |ΔK| = 0 and Wp = 0.2

    表 1  参考文献[12]中的参数

    Table 1.  Parameters in Ref. [12].

    参数参数
    νa/νp1.06Ap/cm22.83 × 10–4
    ν1s/νp0.94lR/cm3.2
    ν2s/νp0.88g/(cm·GW–1)13
    wp/ps20Δk0
    DownLoad: CSV

    表 2  不同情况下反斯托克斯转化效率的理论值与实验数据的对比结果

    Table 2.  Comparisons of theoretical and experimental results of anti-Stokes conversion efficiency under different conditions.

    抽运脉冲
    能量/μJ
    探测脉冲
    能量/μJ
    Grprobe实验
    值/%
    理论
    值/%
    30252060.452.802.54
    3021180.0631.881.86
    26121400.323.504.13
    DownLoad: CSV

    表 3  高斯近似时反斯托克斯转化效率的理论值

    Table 3.  Theoretical values of anti-Stokes conversion efficiency for Gaussian approximation.

    抽运脉冲能量/μJ探测脉冲能量/μJ$ \eta _{\rm{a}}^{\rm{g}}$/%
    30252.63
    3021.91
    26124.09
    DownLoad: CSV
  • [1]

    孙瑛璐, 段延敏, 程梦瑶, 袁先漳, 张立, 张栋, 朱海永 2020 物理学报 69 124201Google Scholar

    Sun Y L, Duan Y M, Cheng M Y, Yuan X Z, Zhang L, Zhang D, Zhu H Y 2020 Acta Phys. Sin. 69 124201Google Scholar

    [2]

    张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤 2018 物理学报 67 024206Google Scholar

    Zhang Y C, Fan L, Wei C F, Gu X M, Ren S X 2018 Acta Phys. Sin. 67 024206Google Scholar

    [3]

    Zhou Q Q, Shi S C, Chen S M, Duan Y M, Zhang X M, Guo J, Zhao B, Zhu H Y 2019 Chin. Phys. Lett. 36 014205Google Scholar

    [4]

    Sheng Q, Li R, Lee A J, Spence D J, Pask H M 2019 Opt. Express 27 8540Google Scholar

    [5]

    Wei L J, Chen M T, Zhu S Q, Dai S B, Yin H, Chen Z Q 2018 Laser Phys. Lett. 15 125001Google Scholar

    [6]

    Duan Y M, Sun Y L, Zhu H Y, Mao T W, Zhang L, Chen X 2020 Opt. Lett. 45 2564Google Scholar

    [7]

    Liu J, Ding X, Jiang P B, Sheng Q, Yu X Y, Sun B, Wang J B, Shi R, Zhao L, Bai Y T, Zhang G Z, Wu L, Yao J Q 2018 Appl. Opt. 57 3154Google Scholar

    [8]

    Ding S H, Zhang X Y, Wang Q P, Jia P, Zhang C, Liu B 2006 Opt. Commun. 267 480Google Scholar

    [9]

    Smetanin S N, Doroshenko M E, Ivleva L I, Jelínek M, V. Kubeček, Jelínková H 2014 Appl. Phys. B 117 225Google Scholar

    [10]

    Ding S H, Zhang X Y, Wang Q P, Zhang J, Wang S M, Liu Y R, Zhang X H 2007 J. Phys. D 40 2736

    [11]

    Smetanin S N, Jelínek M, Tereshchenko D P, Kubeček V 2018 Opt. Express 26 22637Google Scholar

    [12]

    Smetanin S N, Jelínek M, Kubeček V 2017 Appl. Phys. B 123 203

    [13]

    Vermeulen N, Debaes C, Fotiadi A A, Panajotov K, Thienpont H 2006 IEEE J. Quantum Electron. 42 1144Google Scholar

    [14]

    Grasiuk A Z, Kurbasov S V, Losev L L 2004 Opt. Commun. 240 239Google Scholar

    [15]

    Mildren R P, Coutts D W, Spence D J 2009 Opt. Express 17 810Google Scholar

    [16]

    Wang C, Zhang X Y, Wang Q P, Cong Z H, Liu Z J, Wei W, Wang W T, Wu Z G, Zhang Y G, Li L, Chen X H, Li P, Zhang H J, Ding S H 2013 Opt. Express 21 26014Google Scholar

    [17]

    Wang C, Cong Z H, Qin Z G, Zhang X Y, Wei W, Wang W T, Zhang Y G, Zhang H J, Yu H H 2014 Opt. Commun. 322 44Google Scholar

    [18]

    Wei W, Zhang X Y, Wang Q P, Wang C, Cong Z H, Chen X H, Liu Z J, Wang W T, Wu Z G, Ding S H, Tu C Y, Li Y F, Cheng W Y 2014 Appl. Phys. B 116 561

    [19]

    Smetanin S N, Jelínek M, Tereshchenko D P, Shukshin V E, Konyukhov M V, Papashvili A G, Voronina I S, Ivleva L I, Kubeček V 2020 Opt. Express 28 22919Google Scholar

    [20]

    Shen Y R, Bloembergen N 1965 Phys. Rev. 137 1787Google Scholar

  • [1] Tian Zi-Yang, Zhao Hui-Jie, Wei Hao-Yun, Li Yan. Thermometry in dynamic and high-temperature combustion filed based on hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering. Acta Physica Sinica, 2021, 70(21): 214203. doi: 10.7498/aps.70.20211144
    [2] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [3] Peng Ya-Jing, Sun Shuang, Song Yun-Fei, Yang Yan-Qiang. Coherent anti-Stokes Raman scattering spectrum of vibrational properties of liquid nitromethane molecules. Acta Physica Sinica, 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [4] Hou Guo-Hui, Luo Teng, Chen Bing-Ling, Liu Jie, Lin Zi-Yang, Chen Dan-Ni, Qu Jun-Le. Experimental study on two-photon fluorescence and coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [5] Zheng Juan-Juan, Yao Bao-Li, Shao Xiao-Peng. Nonresonant background suppression in wide-field Coherent anti-Stokes Raman scattering microscopy with transport of intensity equation based phase imaging. Acta Physica Sinica, 2017, 66(11): 114206. doi: 10.7498/aps.66.114206
    [6] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Qu Jun-Le, Niu Han-Ben. Research on coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2016, 65(6): 064204. doi: 10.7498/aps.65.064204
    [7] Zhang Sai-Wen, Chen Dan-Ni, Liu Shuang-Long, Liu Wei, Niu Han-Ben. Nanometer resolution coherent anti-Stokes Raman scattering microscopic imaging. Acta Physica Sinica, 2015, 64(22): 223301. doi: 10.7498/aps.64.223301
    [8] Li Ya-Hui, Liang Run-Fu, Qiu Jun-Peng, Lin Zi-Yang, Qu Jun-Le, Liu Li-Xin, Yin Jun, Niu Han-Ben. Vector analysis of the coherent anti-Stokes Raman scattering signals generated under the tightly focused condition. Acta Physica Sinica, 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [9] Liu Shuang-Long, Liu Wei, Chen Dan-Ni, Niu Han-Ben. Generation of dark hollow beams used in sub-diffraction-limit imaging in coherent anti-Stokes Raman scattering microscopy. Acta Physica Sinica, 2014, 63(21): 214601. doi: 10.7498/aps.63.214601
    [10] Yin Jun, Yu Feng, Hou Guo-Hui, Liang Run-Fu, Tian Yu-Liang, Lin Zi-Yang, Niu Han-Ben. Theoretical and experimental study on the multi-color broadband coherent anti-Stokes Raman scattering processes. Acta Physica Sinica, 2014, 63(7): 073301. doi: 10.7498/aps.63.073301
    [11] Liu Wei, Chen Dan-Ni, Liu Shuang-Long, Niu Han-Ben. Diffraction barrier breakthrough in coherent anti-Stokes Raman scattering microscopy and detection limitanalysis. Acta Physica Sinica, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [12] Yu Ling-Yao, Yin Jun, Wan Hui, Liu Xing, Qu Jun-Le, Niu Han-Ben, Lin Zi-Yang. Study on the method and experiment of time-resolved coherent anti-Stokes Raman scattering using supercontinuum excitation. Acta Physica Sinica, 2010, 59(8): 5406-5411. doi: 10.7498/aps.59.5406
    [13] Wang Sha, Chen Jun, Tong Li-Xin, Gao Qing-Song, Liu Chong, Tang Chun. Experimental and theoretical investigation of fused silica rod-fiber phase conjugator. Acta Physica Sinica, 2008, 57(3): 1719-1724. doi: 10.7498/aps.57.1719
    [14] Wang E-Feng, Li Hong-Fu, Li Hao, Yu Sheng, Niu Xin-Jian, Liu Ying-Hui. Study of the helical wave-guide. Acta Physica Sinica, 2005, 54(11): 5339-5343. doi: 10.7498/aps.54.5339
    [15] Li Wen-Bo, Li Ke-Xuan. Solution of radial equation of Kepler’s problem by pseudo-angular-momentum method and normalization of eigenstate and coherent state. Acta Physica Sinica, 2004, 53(9): 2964-2969. doi: 10.7498/aps.53.2964
    [16] Niu Xin-Jian, Li Hong-Fu, Yu Sheng, Xie Zhong-Lian, Yang Shi-Wen. . Acta Physica Sinica, 2002, 51(10): 2291-2295. doi: 10.7498/aps.51.2291
    [17] WU PENG-FEI, GONG XIONG, ZHANG GUI-LAN, TANG GUO-QING, CHEN WEN-JU. TEMPORAL BEHAVIOR OF DFWM AND HOLOGRAPHY IN SATURABLE AND REVERSE SATURABLE ABSORBERS. Acta Physica Sinica, 1996, 45(3): 380-388. doi: 10.7498/aps.45.380
    [18] ZHANG RUI-HUA, MI XIN, ZHOU HAI-TIAN, JIANG QIAN, YE PEI-XIAN. MULTILEVEL THEORY OF TIME-DELAY FOUR-WAVE MIXING WITH INCOHERENT LIGHT——INHOMO-GENEOUS BROADENING CASE. Acta Physica Sinica, 1991, 40(3): 414-423. doi: 10.7498/aps.40.414
    [19] DING HONG-YU, WU BAI-SHI, YIN DA-JUN, LI JIN-QUAN. RATE EQUATION THEORY OF DEGENERATE FOUR WAVE MIXING. Acta Physica Sinica, 1988, 37(3): 408-415. doi: 10.7498/aps.37.408
    [20] FAN JUN-YING, WU CUN-KAI, WANG ZHI-YING. THE THEORY OF RESONANTLY ENHANCED FOUR-WAVE MIXING IN ABSORBING MEDIA. Acta Physica Sinica, 1980, 29(7): 897-904. doi: 10.7498/aps.29.897
Metrics
  • Abstract views:  3388
  • PDF Downloads:  36
  • Cited By: 0
Publishing process
  • Received Date:  17 August 2020
  • Accepted Date:  17 February 2021
  • Available Online:  19 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回