Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Valleytronic properties and devices based on two-dimensional atomic layer materials

Sun Zhen-Hao Guan Hong-Ming Fu Lei Shen Bo Tang Ning

Citation:

Valleytronic properties and devices based on two-dimensional atomic layer materials

Sun Zhen-Hao, Guan Hong-Ming, Fu Lei, Shen Bo, Tang Ning
PDF
HTML
Get Citation
  • Artificial manipulation of electronic degrees of freedom is the key point to realize modern electronic devices. Both charge and spin of electron have been widely studied and applied to logic circuits and information storage devices. Valley, the unique degree of freedom of crystal electrons, has also attracted great attention of the researchers in the past decade. The valleytronics progress benefits from the tremendous improvements of the two-dimensional atomic layer material growth technologies and in-depth explorations of valley properties. Valleytronic materials, represented by two-dimensional transition metal dichalcogenides, have become an excellent platform for the research and design of new electronic devices due to their special optical responses and distinctive electronic transport properties. The valley devices have the advantages of fast operation, low energy consumption, less information loss, high integration and long transmission distance.In this review, we first introduce the basic concepts and properties of the energy valley, such as the valley Hall effect and the valley circular dichroism. Second, we describe the crystal structures and energy band diagrams of the two-dimensional transition metal dichalcogenides. Third, the progress in artificial manipulation of the valley effects is summarized. Some approaches which can break the inversion symmetry and therefore induce the valley degree of freedom are introduced. Fourth, we discuss the methods of realizing valley polarization. Fifth, the developments of valleytronic devices in recent years are reviewed. Finally, a summary and an outlook are given.
      Corresponding author: Tang Ning, ntang@pku.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400802, 2018YFB0406603, 2018YFE0125700) and the National Natural Science Foundation of China (Grant Nos. 61574006, 61927806, 61521004, 11634002)
    [1]

    Urbaszek B, Marie X 2015 Nature Phys. 11 94Google Scholar

    [2]

    Amet F, Finkelstein G 2015 Nature Phys. 11 989Google Scholar

    [3]

    Li X, Moody G 2017 Nature Phys. 13 9Google Scholar

    [4]

    Yu H, Yao W 2017 Nat. Mater. 16 876Google Scholar

    [5]

    Zhang F 2018 Nature Phys. 14 111Google Scholar

    [6]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809Google Scholar

    [7]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [8]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [9]

    Xie L, Cui X D 2016 P. Natl. Acad. Sci. 113 3746Google Scholar

    [10]

    Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotech. 11 598Google Scholar

    [11]

    Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D, Rothschild M 2018 Small 14 1801483Google Scholar

    [12]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055Google Scholar

    [13]

    Sham L J, Allen S J Jr, Kamgar A, Tsui D C 1978 Phys. Rev. Lett. 40 472Google Scholar

    [14]

    Ohkawa F J, Uemura Y 1977 J. Phys. Soc. Jpn. 43 907Google Scholar

    [15]

    Shkolnikov Y P, De Poortere E P, Tutuc E, Shayegan M 2002 Phys. Rev. Lett. 89 226805Google Scholar

    [16]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404Google Scholar

    [17]

    Koiller B, Hu X, Das Sarma S 2002 Phys. Rev. Lett. 88 027903

    [18]

    Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N, Eriksson M A 2007 Nature Phys. 3 41Google Scholar

    [19]

    Isberg, J, Gabrysch M, Hammersberg J, Majdi S, Kovi K K, Twitchen D J 2013 Nat. Mater. 12 760Google Scholar

    [20]

    Zhu Z, Collaudin A, Fauqué B, Kang W, Behnia K 2012 Nature Phys. 8 89Google Scholar

    [21]

    Xiao D, Chang M C, Niu Q 2010 Reviews of Modern Physics 82 1959Google Scholar

    [22]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489Google Scholar

    [23]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotech. 11 421Google Scholar

    [24]

    Ubrig N, Jo S, Philippi M, Costanzo D, Berger H, Kuzmenko A B, Morpurgo A F 2017 Nano Lett. 17 5719Google Scholar

    [25]

    Barré E, Incorvia J A C, Kim S H, McClellan C J, Pop E, Wong H-S P, Heinz T F 2019 Nano Lett. 19 770Google Scholar

    [26]

    Hung T Y T, Camsari K Y, Zhang S, Upadhyaya P, Chen Z 2019 Sci. Adv. 5 6478Google Scholar

    [27]

    Wu Z, Zhou B T, Cai X, Cheung P, Liu G B, Huang M, Lin J, Han T, An L, Wang Y, Xu S, Long G, Cheng C, Law K T, Zhang F, Wang N 2019 Nat. Commun. 10 611Google Scholar

    [28]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [29]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494Google Scholar

    [30]

    Zeng H, Dai J, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490Google Scholar

    [31]

    Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan P H, Kan M 2013 Nano Lett. 13 3870Google Scholar

    [32]

    Song Z, Li Z, Wang H, Bai X, Wang W, Du H, Liu S, Wang C, Han J, Yang Y 2017 Nano Lett. 17 2079Google Scholar

    [33]

    Wan Y, Xiao J, Li J, Fang X, Zhang K, Fu L, Li P, Song Z, Zhang H, Wang Y, Zhao M, Lu J, Tang N, Ran G, Zhang X, Ye Y, Dai L 2018 Adv. Mater. 30 1703888Google Scholar

    [34]

    Glazov M M, Ivchenko E L, Wang G, Amand T, Marie X, Urbaszek B, Liu B L 2015 Phys. Status Solidi B 252 2349Google Scholar

    [35]

    Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J, Crooker S A 2015 Nature Phys. 11 830Google Scholar

    [36]

    Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J, Chang W H 2015 Nat. Commun. 6 8963Google Scholar

    [37]

    Dey P, Yang L, Robert C, Wang G, Urbaszek B, Marie X, Crooker S A 2017 Phys. Rev. Lett. 119 137401Google Scholar

    [38]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [39]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [40]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [41]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [42]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [43]

    Zhou B T, Yuan N F Q, Jiang H L, Law K T 2016 Phys. Rev. B 93 180501Google Scholar

    [44]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416Google Scholar

    [45]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotech. 8 497Google Scholar

    [46]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [47]

    Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [48]

    Fu L, Wan Y, Tang N, Ding Y M, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J J, Wu X, Shi S F, Ge W, Dai L, Shen B 2017 Sci. Adv. 3 e1700162Google Scholar

    [49]

    Fan X, Chang C H, Zheng W T, Kuo J L, Singh D J 2015 J. Phys. Chem. C 119 10189Google Scholar

    [50]

    Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448Google Scholar

    [51]

    Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, Zhang Y 2015 Nature Phys. 11 1027Google Scholar

    [52]

    Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, Tarucha S 2015 Nature Phys. 11 1032Google Scholar

    [53]

    Lensky Y D, Song J C W, Samutpraphoot P, Levitov L S 2015 Phys. Rev. Lett. 114 256601Google Scholar

    [54]

    Abanin D A, Shytov A V, Levitov L S, Halperin B I 2009 Phys. Rev. B 79 035304Google Scholar

    [55]

    Liu G B, Shan W Y, Yao Y, Yao W, Xiao D 2013 Phys. Rev. B 88 085433Google Scholar

    [56]

    Kośmider K, González J W, Fernández-Rossier J 2013 Phys. Rev. B 88 245436Google Scholar

    [57]

    Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D, Xu X 2013 Nature Phys. 9 149Google Scholar

    [58]

    Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y R, Liu W T, Wu S 2014 Nat. Nanotech. 9 825Google Scholar

    [59]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [60]

    Sih V, Myers R C, Kato Y K, Lau W H, Gossard A C, Awschalom D D 2005 Nature Phys. 1 31Google Scholar

    [61]

    Gong C, Colombo L, Wallace R M, Cho K 2014 Nano Lett. 14 1714Google Scholar

    [62]

    Bampoulis P, van Bremen R, Yao Q, Poelsema B, Zandvliet H J W, Sotthewes K 2017 ACS Appl. Mater. Interfaces 9 19278Google Scholar

    [63]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588Google Scholar

    [64]

    Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N, Iwasa Y 2013 Nature Phys. 9 563Google Scholar

    [65]

    Lyanda-Geller Y B, Li S, Andreev A V 2015 Phys. Rev. B 92 241406Google Scholar

    [66]

    Eginligil M, Cao B, Wang Z, Shen X, Cong C, Shang J, Soci C, Yu T 2015 Nat. Commun. 6 7636Google Scholar

    [67]

    Yuan H, Wang X, Lian B, Zhang H, Fang X, Shen B, Xu G, Xu Y, Zhang S C, Hwang H Y, Cui Y 2014 Nat. Nanotechnol. 9 851Google Scholar

    [68]

    Guan H, Tang N, Xu X, Shang L, Huang W, Fu L, Fang X, Yu J, Zhang C, Zhang X, Dai L, Chen Y, Ge W, Shen B 2017 Phys. Rev. B 96 241304Google Scholar

    [69]

    Suzuki R, Sakano M, Zhang Y, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K, Miyamoto K, Okuda T, Ishizaka K, Arita R, Iwasa Y 2014 Nat. Nanotech. 9 611Google Scholar

    [70]

    Guan H, Tang N, Huang H, Zhang X, Su M, Liu X, Liao L, Ge W, Shen B 2019 ACS Nano 13 9325Google Scholar

    [71]

    Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar

    [72]

    Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, van der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804Google Scholar

    [73]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nature Phys. 11 141Google Scholar

    [74]

    Qi J, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403Google Scholar

    [75]

    Xu L, Yang M, Shen L, Zhou J, Zhu T, Feng Y P 2018 Phys. Rev. B 97 041405Google Scholar

    [76]

    Zollner K, Junior P E F, Fabian J 2020 Phys. Rev. B 101 085112Google Scholar

    [77]

    Mao X, Liu Z, Li J, Li C, Teng S, Liu Y, Xu X 2020 Journal of Magnetism and Magnetic Materials 512 167061Google Scholar

    [78]

    Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H 2017 Nat. Nanotech. 12 757Google Scholar

    [79]

    Zhang Q Y, Yang S Y A, Mi W B, Cheng Y C, Schwingenschlogl U 2016 Adv. Mater. 28 959Google Scholar

    [80]

    Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163Google Scholar

    [81]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotech. 13 544Google Scholar

    [82]

    Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P T, Sheng Z G, Qu Z, Song W H, Zhu X B, Sun Y P 2017 Phys. Rev. B 95 245212Google Scholar

    [83]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [84]

    Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M, Xu X 2018 Nano Lett. 18 3823Google Scholar

    [85]

    Ke C, Wu Y, Guo G Y, Lin W, Wu Z, Zhou C, Kang J 2018 Phys. Rev. Appl. 9 044029Google Scholar

    [86]

    Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar

    [87]

    Zollner K, Junior P E F, Fabian J 2019 Phys. Rev. B 100 085128Google Scholar

    [88]

    Peng B, Li Q, Liang X, Song P, Li J, He K, Fu D, Li Y, Shen C, Wang H, Wang C, Liu T, Zhang L, Lu H, Wang X, Zhao J, Xie J, Wu M, Bi L, Deng L, Loh K P 2017 ACS Nano 11 12257Google Scholar

    [89]

    Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X, Kang J 2019 Phys. Rev. B 100 195435Google Scholar

    [90]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201Google Scholar

    [91]

    Yin M Y, Wang X C, Mi W B, Yang B H 2015 Computational Materials Science 99 326Google Scholar

    [92]

    Zhou J, Lin J, Sims H, Jiang C, Cong C, Brehm J A, Zhang Z, Niu L, Chen Y, Zhou Y, Wang Y, Liu F, Zhu C, Yu T, Suenaga K, Mishra R, Pantelides S T, Zhu Z G, Gao W, Liu Z, Zhou W 2020 Adv. Mater. 32 1906536Google Scholar

    [93]

    Li Q, Zhao X, Deng L, Shi Z, Liu S, Wei Q, Zhang L, Cheng Y, Zhang L, Lu H, Gao W, Huang W, Qiu C W, Xiang G, Pennycook S J, Xiong Q, Loh K P, Peng B 2020 ACS Nano 14 4636Google Scholar

    [94]

    Liu J, Hou W J, Cheng C, Fu H X, Sun J T, Meng S 2017 J. Phys.: Condens. Matter 29 255501Google Scholar

    [95]

    Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P, Peng B 2020 Nano Lett. 20 2129Google Scholar

    [96]

    Wu G Y, Lue N Y, Chen Y C 2013 Phys. Rev. B 88 125422Google Scholar

    [97]

    Rycerz A, Tworzydło J, Beenakker C W J 2007 Nature Phys. 3 172Google Scholar

    [98]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [99]

    Lee M K, Lue N Y, Wen C K, Wu G Y 2012 Phys. Rev. B 86 165411Google Scholar

    [100]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665Google Scholar

    [101]

    Wu G Y, Lue N Y, Chang L 2011 Phys. Rev. B 84 195463Google Scholar

    [102]

    Wu G Y, Lue N Y 2012 Phys. Rev. B 86 045456Google Scholar

    [103]

    Yu H, Wu Y, Liu G B, Xu X, Yao W 2014 Phys. Rev. Lett. 113 156603Google Scholar

    [104]

    Zhang Y J, Oka T, Suzuki R, Ye J T, Iwasa Y 2014 Science 344 725Google Scholar

    [105]

    Yang W, Shang J, Wang J, Shen X, Cao B, Peimyoo N, Zou C, Chen Y, Wang Y, Cong C, Huang W, Yu T 2016 Nano Lett. 16 1560Google Scholar

    [106]

    Scrace T, Tsai Y, Barman B, Schweidenback L, Petrou A, Kioseoglou G, Ozfidan I, Korkusinski M, Hawrylak P 2015 Nat. Nanotech. 10 603Google Scholar

    [107]

    Onga M, Zhang Y, Suzuki R, Iwasa Y 2016 Appl. Phys. Lett. 108 073107Google Scholar

    [108]

    Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Nanotech. 8 634Google Scholar

    [109]

    Ye Z, Sun D, Heinz T F 2017 Nat. Phys. 13 26Google Scholar

    [110]

    Wang G, Marie X, Liu B, Amand T, Robert C, Cadiz F, Renucci P, Urbaszek B 2016 Phys. Rev. Lett. 117 187401Google Scholar

    [111]

    Yu H, Liu G B, Gong P, Xu X, Yao W 2014 Nat. Commun. 5 3876Google Scholar

    [112]

    Kim J, Jin C, Chen B, Cai H, Zhao T, Lee P, Kahn S, Watanabe K, Taniguchi T, Tongay S, Crommie M F, Wang F 2017 Sci. Adv. 3 e1700518Google Scholar

    [113]

    Rivera P, Seyler K L, Yu H, Schaibley J R, Yan J, Mandrus D G, Yao W, Xu X 2016 Science 351 688Google Scholar

    [114]

    Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, Xu X 2018 Nat. Nanotechnol. 13 1004Google Scholar

    [115]

    Unuchek D, Ciarrocchi A, Avsar A, Sun Z, Watanabe K, Taniguchi T, Kis A 2019 Nat. Nanotech. 14 1104Google Scholar

    [116]

    Gong S H, Komen I, Alpeggiani F, Kuipers L 2020 Nano Lett. 20 4410Google Scholar

    [117]

    Li L, Shao L, Liu X, Gao A, Wang H, Zheng B, Hou G, Shehzad K, Yu L, Miao F, Shi Y, Xu Y, Wang X 2020 Nat. Nanotech. 15 743Google Scholar

    [118]

    Fang Y, Verre R, Shao L, Nordlander P, Käll M 2016 Nano Lett. 16 5183Google Scholar

    [119]

    Tao L L, Tsymbal E Y 2019 Phys. Rev. B 100 161110Google Scholar

    [120]

    Tao L L, Naeemi A, Tsymbal E Y 2020 Phys. Rev. Appl. 13 054043Google Scholar

    [121]

    Avsar A, Unuchek D, Liu J, Sanchez O L, Watanabe K, Taniguchi T, Özyilmaz B, Kis A 2017 ACS Nano 11 11678Google Scholar

    [122]

    Luo Y K, Xu J, Zhu T, Wu G, McCormick E J, Zhan W, Neupane M R, Kawakami R K 2017 Nano Lett. 17 3877Google Scholar

    [123]

    Ominato Y, Fujimoto J, Matsuo M 2020 Phys. Rev. Lett. 124 166803Google Scholar

    [124]

    Yu Z M, Guan S, Sheng X L, Gao W, Yang S A 2020 Phys. Rev. Lett. 124 037701Google Scholar

  • 图 1  空间反演对称性破缺的石墨烯的能带(上半部分)和导带轨道磁矩(下半部分). 贝里曲率分布和轨道磁矩类似[6]

    Figure 1.  Energy bands (top panel) and orbital magnetic moment of the conduction bands (bottom panel) of a graphene sheet with broken inversion symmetry. The Berry curvature Ω(k) has a distribution similar to that of m(k)[6].

    图 2  单层器件和双层器件霍尔电压随着源漏偏压的变化关系[22]

    Figure 2.  The source-drain bias dependence of the Hall voltage for the monolayer device and bilayer device[22].

    图 3  单层MoS2中谷霍尔效应与逆谷霍尔效应导致的能谷流示意图[26]

    Figure 3.  Schematic of valley-coupled topological current due to VHE and inverse VHE (iVHE) in monolayer MoS2[26].

    图 4  单层MoS2在83 K下的圆偏振极化PL谱和PL谱的圆偏振极化程度. 红色和蓝色曲线分别对应于发光光谱中${\sigma ^ + }$${\sigma ^ - }$极化强度, 黑色曲线是净极化的大小[28]

    Figure 4.  Circularly polarized micro-PL of monolayer MoS2 at 83 K, along with the degree of circular polarization of the PL spectra. The red and blue curves correspond to the intensities of ${\sigma ^ + }$ and ${\sigma ^ - }$ polarizations, respectively, in the luminescence spectrum. The black curve is the net degree of polarization[28].

    图 5  (a)体MoS2, (b)四层MoS2, (c)双层MoS2和(d)单层MoS2的能带结构. 实心箭头表示最低能量跃迁. 体和多层MoS2具有间接带隙特性. 对于单层MoS2, 它变为直接带隙半导体[42]

    Figure 5.  Calculated band structures of (a) bulk MoS2, (b) quadrilayer MoS2, (c) bilayer MoS2, and (d) monolayer MoS2. The solid arrows indicate the lowest energy transitions. Bulk MoS2 is characterized by an indirect bandgap. For monolayer MoS2, it becomes a direct bandgap semiconductor[42].

    图 6  单层到6层MoS2样品A激子峰强度的归一化PL光谱[41]

    Figure 6.  Normalized PL spectra by the intensity of peak A of thin layers of MoS2 for number of layers = 1–6[41].

    图 7  635 nm激发下多层MoS2中光电流与1/4波片角的函数关系 (a)不加离子液体; (b)有离子液体[68]

    Figure 7.  Photocurrent as a function of the quarter-wave-plate angle in multilayer MoS2 under 635 nm excitation: (a) Without the application of ionic liquid; (b) with the application of ionic liquid[68].

  • [1]

    Urbaszek B, Marie X 2015 Nature Phys. 11 94Google Scholar

    [2]

    Amet F, Finkelstein G 2015 Nature Phys. 11 989Google Scholar

    [3]

    Li X, Moody G 2017 Nature Phys. 13 9Google Scholar

    [4]

    Yu H, Yao W 2017 Nat. Mater. 16 876Google Scholar

    [5]

    Zhang F 2018 Nature Phys. 14 111Google Scholar

    [6]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809Google Scholar

    [7]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [8]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [9]

    Xie L, Cui X D 2016 P. Natl. Acad. Sci. 113 3746Google Scholar

    [10]

    Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotech. 11 598Google Scholar

    [11]

    Vitale S A, Nezich D, Varghese J O, Kim P, Gedik N, Jarillo-Herrero P, Xiao D, Rothschild M 2018 Small 14 1801483Google Scholar

    [12]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055Google Scholar

    [13]

    Sham L J, Allen S J Jr, Kamgar A, Tsui D C 1978 Phys. Rev. Lett. 40 472Google Scholar

    [14]

    Ohkawa F J, Uemura Y 1977 J. Phys. Soc. Jpn. 43 907Google Scholar

    [15]

    Shkolnikov Y P, De Poortere E P, Tutuc E, Shayegan M 2002 Phys. Rev. Lett. 89 226805Google Scholar

    [16]

    Gunawan O, Shkolnikov Y P, Vakili K, Gokmen T, De Poortere E P, Shayegan M 2006 Phys. Rev. Lett. 97 186404Google Scholar

    [17]

    Koiller B, Hu X, Das Sarma S 2002 Phys. Rev. Lett. 88 027903

    [18]

    Goswami S, Slinker K A, Friesen M, McGuire L M, Truitt J L, Tahan C, Klein L J, Chu J O, Mooney P M, van der Weide D W, Joynt R, Coppersmith S N, Eriksson M A 2007 Nature Phys. 3 41Google Scholar

    [19]

    Isberg, J, Gabrysch M, Hammersberg J, Majdi S, Kovi K K, Twitchen D J 2013 Nat. Mater. 12 760Google Scholar

    [20]

    Zhu Z, Collaudin A, Fauqué B, Kang W, Behnia K 2012 Nature Phys. 8 89Google Scholar

    [21]

    Xiao D, Chang M C, Niu Q 2010 Reviews of Modern Physics 82 1959Google Scholar

    [22]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489Google Scholar

    [23]

    Lee J, Mak K F, Shan J 2016 Nat. Nanotech. 11 421Google Scholar

    [24]

    Ubrig N, Jo S, Philippi M, Costanzo D, Berger H, Kuzmenko A B, Morpurgo A F 2017 Nano Lett. 17 5719Google Scholar

    [25]

    Barré E, Incorvia J A C, Kim S H, McClellan C J, Pop E, Wong H-S P, Heinz T F 2019 Nano Lett. 19 770Google Scholar

    [26]

    Hung T Y T, Camsari K Y, Zhang S, Upadhyaya P, Chen Z 2019 Sci. Adv. 5 6478Google Scholar

    [27]

    Wu Z, Zhou B T, Cai X, Cheung P, Liu G B, Huang M, Lin J, Han T, An L, Wang Y, Xu S, Long G, Cheng C, Law K T, Zhang F, Wang N 2019 Nat. Commun. 10 611Google Scholar

    [28]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B, Feng J 2012 Nat. Commun. 3 887Google Scholar

    [29]

    Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotech. 7 494Google Scholar

    [30]

    Zeng H, Dai J, Yao W, Xiao D, Cui X D 2012 Nat. Nanotech. 7 490Google Scholar

    [31]

    Ji Q, Zhang Y, Gao T, Zhang Y, Ma D, Liu M, Chen Y, Qiao X, Tan P H, Kan M 2013 Nano Lett. 13 3870Google Scholar

    [32]

    Song Z, Li Z, Wang H, Bai X, Wang W, Du H, Liu S, Wang C, Han J, Yang Y 2017 Nano Lett. 17 2079Google Scholar

    [33]

    Wan Y, Xiao J, Li J, Fang X, Zhang K, Fu L, Li P, Song Z, Zhang H, Wang Y, Zhao M, Lu J, Tang N, Ran G, Zhang X, Ye Y, Dai L 2018 Adv. Mater. 30 1703888Google Scholar

    [34]

    Glazov M M, Ivchenko E L, Wang G, Amand T, Marie X, Urbaszek B, Liu B L 2015 Phys. Status Solidi B 252 2349Google Scholar

    [35]

    Yang L, Sinitsyn N A, Chen W, Yuan J, Zhang J, Lou J, Crooker S A 2015 Nature Phys. 11 830Google Scholar

    [36]

    Hsu W T, Chen Y L, Chen C H, Liu P S, Hou T H, Li L J, Chang W H 2015 Nat. Commun. 6 8963Google Scholar

    [37]

    Dey P, Yang L, Robert C, Wang G, Urbaszek B, Marie X, Crooker S A 2017 Phys. Rev. Lett. 119 137401Google Scholar

    [38]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [39]

    Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotech. 6 147Google Scholar

    [40]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotech. 7 699Google Scholar

    [41]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [42]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [43]

    Zhou B T, Yuan N F Q, Jiang H L, Law K T 2016 Phys. Rev. B 93 180501Google Scholar

    [44]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416Google Scholar

    [45]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotech. 8 497Google Scholar

    [46]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [47]

    Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T, Bolotin K I 2013 Nano Lett. 13 3626Google Scholar

    [48]

    Fu L, Wan Y, Tang N, Ding Y M, Gao J, Yu J, Guan H, Zhang K, Wang W, Zhang C, Shi J J, Wu X, Shi S F, Ge W, Dai L, Shen B 2017 Sci. Adv. 3 e1700162Google Scholar

    [49]

    Fan X, Chang C H, Zheng W T, Kuo J L, Singh D J 2015 J. Phys. Chem. C 119 10189Google Scholar

    [50]

    Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448Google Scholar

    [51]

    Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, Zhang Y 2015 Nature Phys. 11 1027Google Scholar

    [52]

    Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, Tarucha S 2015 Nature Phys. 11 1032Google Scholar

    [53]

    Lensky Y D, Song J C W, Samutpraphoot P, Levitov L S 2015 Phys. Rev. Lett. 114 256601Google Scholar

    [54]

    Abanin D A, Shytov A V, Levitov L S, Halperin B I 2009 Phys. Rev. B 79 035304Google Scholar

    [55]

    Liu G B, Shan W Y, Yao Y, Yao W, Xiao D 2013 Phys. Rev. B 88 085433Google Scholar

    [56]

    Kośmider K, González J W, Fernández-Rossier J 2013 Phys. Rev. B 88 245436Google Scholar

    [57]

    Wu S, Ross J S, Liu G B, Aivazian G, Jones A, Fei Z, Zhu W, Xiao D, Yao W, Cobden D, Xu X 2013 Nature Phys. 9 149Google Scholar

    [58]

    Jiang T, Liu H, Huang D, Zhang S, Li Y, Gong X, Shen Y R, Liu W T, Wu S 2014 Nat. Nanotech. 9 825Google Scholar

    [59]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [60]

    Sih V, Myers R C, Kato Y K, Lau W H, Gossard A C, Awschalom D D 2005 Nature Phys. 1 31Google Scholar

    [61]

    Gong C, Colombo L, Wallace R M, Cho K 2014 Nano Lett. 14 1714Google Scholar

    [62]

    Bampoulis P, van Bremen R, Yao Q, Poelsema B, Zandvliet H J W, Sotthewes K 2017 ACS Appl. Mater. Interfaces 9 19278Google Scholar

    [63]

    Kim C, Moon I, Lee D, Choi M S, Ahmed F, Nam S, Cho Y, Shin H J, Park S, Yoo W J 2017 ACS Nano 11 1588Google Scholar

    [64]

    Yuan H, Bahramy M S, Morimoto K, Wu S, Nomura K, Yang B J, Shimotani H, Suzuki R, Toh M, Kloc C, Xu X, Arita R, Nagaosa N, Iwasa Y 2013 Nature Phys. 9 563Google Scholar

    [65]

    Lyanda-Geller Y B, Li S, Andreev A V 2015 Phys. Rev. B 92 241406Google Scholar

    [66]

    Eginligil M, Cao B, Wang Z, Shen X, Cong C, Shang J, Soci C, Yu T 2015 Nat. Commun. 6 7636Google Scholar

    [67]

    Yuan H, Wang X, Lian B, Zhang H, Fang X, Shen B, Xu G, Xu Y, Zhang S C, Hwang H Y, Cui Y 2014 Nat. Nanotechnol. 9 851Google Scholar

    [68]

    Guan H, Tang N, Xu X, Shang L, Huang W, Fu L, Fang X, Yu J, Zhang C, Zhang X, Dai L, Chen Y, Ge W, Shen B 2017 Phys. Rev. B 96 241304Google Scholar

    [69]

    Suzuki R, Sakano M, Zhang Y, Akashi R, Morikawa D, Harasawa A, Yaji K, Kuroda K, Miyamoto K, Okuda T, Ishizaka K, Arita R, Iwasa Y 2014 Nat. Nanotech. 9 611Google Scholar

    [70]

    Guan H, Tang N, Huang H, Zhang X, Su M, Liu X, Liao L, Ge W, Shen B 2019 ACS Nano 13 9325Google Scholar

    [71]

    Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar

    [72]

    Li Y, Ludwig J, Low T, Chernikov A, Cui X, Arefe G, Kim Y D, van der Zande A M, Rigosi A, Hill H M, Kim S H, Hone J, Li Z, Smirnov D, Heinz T F 2014 Phys. Rev. Lett. 113 266804Google Scholar

    [73]

    Srivastava A, Sidler M, Allain A V, Lembke D S, Kis A, Imamoğlu A 2015 Nature Phys. 11 141Google Scholar

    [74]

    Qi J, Li X, Niu Q, Feng J 2015 Phys. Rev. B 92 121403Google Scholar

    [75]

    Xu L, Yang M, Shen L, Zhou J, Zhu T, Feng Y P 2018 Phys. Rev. B 97 041405Google Scholar

    [76]

    Zollner K, Junior P E F, Fabian J 2020 Phys. Rev. B 101 085112Google Scholar

    [77]

    Mao X, Liu Z, Li J, Li C, Teng S, Liu Y, Xu X 2020 Journal of Magnetism and Magnetic Materials 512 167061Google Scholar

    [78]

    Zhao C, Norden T, Zhang P, Zhao P, Cheng Y, Sun F, Parry J P, Taheri P, Wang J, Yang Y, Scrace T, Kang K, Yang S, Miao G X, Sabirianov R, Kioseoglou G, Huang W, Petrou A, Zeng H 2017 Nat. Nanotech. 12 757Google Scholar

    [79]

    Zhang Q Y, Yang S Y A, Mi W B, Cheng Y C, Schwingenschlogl U 2016 Adv. Mater. 28 959Google Scholar

    [80]

    Norden T, Zhao C, Zhang P, Sabirianov R, Petrou A, Zeng H 2019 Nat. Commun. 10 4163Google Scholar

    [81]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotech. 13 544Google Scholar

    [82]

    Lin G T, Zhuang H L, Luo X, Liu B J, Chen F C, Yan J, Sun Y, Zhou J, Lu W J, Tong P T, Sheng Z G, Qu Z, Song W H, Zhu X B, Sun Y P 2017 Phys. Rev. B 95 245212Google Scholar

    [83]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [84]

    Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K M, Xu X 2018 Nano Lett. 18 3823Google Scholar

    [85]

    Ke C, Wu Y, Guo G Y, Lin W, Wu Z, Zhou C, Kang J 2018 Phys. Rev. Appl. 9 044029Google Scholar

    [86]

    Hu T, Zhao G, Gao H, Wu Y, Hong J, Stroppa A, Ren W 2020 Phys. Rev. B 101 125401Google Scholar

    [87]

    Zollner K, Junior P E F, Fabian J 2019 Phys. Rev. B 100 085128Google Scholar

    [88]

    Peng B, Li Q, Liang X, Song P, Li J, He K, Fu D, Li Y, Shen C, Wang H, Wang C, Liu T, Zhang L, Lu H, Wang X, Zhao J, Xie J, Wu M, Bi L, Deng L, Loh K P 2017 ACS Nano 11 12257Google Scholar

    [89]

    Ke C, Wu Y, Yang W, Wu Z, Zhang C, Li X, Kang J 2019 Phys. Rev. B 100 195435Google Scholar

    [90]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201Google Scholar

    [91]

    Yin M Y, Wang X C, Mi W B, Yang B H 2015 Computational Materials Science 99 326Google Scholar

    [92]

    Zhou J, Lin J, Sims H, Jiang C, Cong C, Brehm J A, Zhang Z, Niu L, Chen Y, Zhou Y, Wang Y, Liu F, Zhu C, Yu T, Suenaga K, Mishra R, Pantelides S T, Zhu Z G, Gao W, Liu Z, Zhou W 2020 Adv. Mater. 32 1906536Google Scholar

    [93]

    Li Q, Zhao X, Deng L, Shi Z, Liu S, Wei Q, Zhang L, Cheng Y, Zhang L, Lu H, Gao W, Huang W, Qiu C W, Xiang G, Pennycook S J, Xiong Q, Loh K P, Peng B 2020 ACS Nano 14 4636Google Scholar

    [94]

    Liu J, Hou W J, Cheng C, Fu H X, Sun J T, Meng S 2017 J. Phys.: Condens. Matter 29 255501Google Scholar

    [95]

    Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P, Peng B 2020 Nano Lett. 20 2129Google Scholar

    [96]

    Wu G Y, Lue N Y, Chen Y C 2013 Phys. Rev. B 88 125422Google Scholar

    [97]

    Rycerz A, Tworzydło J, Beenakker C W J 2007 Nature Phys. 3 172Google Scholar

    [98]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [99]

    Lee M K, Lue N Y, Wen C K, Wu G Y 2012 Phys. Rev. B 86 165411Google Scholar

    [100]

    Datta S, Das B 1990 Appl. Phys. Lett. 56 665Google Scholar

    [101]

    Wu G Y, Lue N Y, Chang L 2011 Phys. Rev. B 84 195463Google Scholar

    [102]

    Wu G Y, Lue N Y 2012 Phys. Rev. B 86 045456Google Scholar

    [103]

    Yu H, Wu Y, Liu G B, Xu X, Yao W 2014 Phys. Rev. Lett. 113 156603Google Scholar

    [104]

    Zhang Y J, Oka T, Suzuki R, Ye J T, Iwasa Y 2014 Science 344 725Google Scholar

    [105]

    Yang W, Shang J, Wang J, Shen X, Cao B, Peimyoo N, Zou C, Chen Y, Wang Y, Cong C, Huang W, Yu T 2016 Nano Lett. 16 1560Google Scholar

    [106]

    Scrace T, Tsai Y, Barman B, Schweidenback L, Petrou A, Kioseoglou G, Ozfidan I, Korkusinski M, Hawrylak P 2015 Nat. Nanotech. 10 603Google Scholar

    [107]

    Onga M, Zhang Y, Suzuki R, Iwasa Y 2016 Appl. Phys. Lett. 108 073107Google Scholar

    [108]

    Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W, Xu X 2013 Nat. Nanotech. 8 634Google Scholar

    [109]

    Ye Z, Sun D, Heinz T F 2017 Nat. Phys. 13 26Google Scholar

    [110]

    Wang G, Marie X, Liu B, Amand T, Robert C, Cadiz F, Renucci P, Urbaszek B 2016 Phys. Rev. Lett. 117 187401Google Scholar

    [111]

    Yu H, Liu G B, Gong P, Xu X, Yao W 2014 Nat. Commun. 5 3876Google Scholar

    [112]

    Kim J, Jin C, Chen B, Cai H, Zhao T, Lee P, Kahn S, Watanabe K, Taniguchi T, Tongay S, Crommie M F, Wang F 2017 Sci. Adv. 3 e1700518Google Scholar

    [113]

    Rivera P, Seyler K L, Yu H, Schaibley J R, Yan J, Mandrus D G, Yao W, Xu X 2016 Science 351 688Google Scholar

    [114]

    Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, Xu X 2018 Nat. Nanotechnol. 13 1004Google Scholar

    [115]

    Unuchek D, Ciarrocchi A, Avsar A, Sun Z, Watanabe K, Taniguchi T, Kis A 2019 Nat. Nanotech. 14 1104Google Scholar

    [116]

    Gong S H, Komen I, Alpeggiani F, Kuipers L 2020 Nano Lett. 20 4410Google Scholar

    [117]

    Li L, Shao L, Liu X, Gao A, Wang H, Zheng B, Hou G, Shehzad K, Yu L, Miao F, Shi Y, Xu Y, Wang X 2020 Nat. Nanotech. 15 743Google Scholar

    [118]

    Fang Y, Verre R, Shao L, Nordlander P, Käll M 2016 Nano Lett. 16 5183Google Scholar

    [119]

    Tao L L, Tsymbal E Y 2019 Phys. Rev. B 100 161110Google Scholar

    [120]

    Tao L L, Naeemi A, Tsymbal E Y 2020 Phys. Rev. Appl. 13 054043Google Scholar

    [121]

    Avsar A, Unuchek D, Liu J, Sanchez O L, Watanabe K, Taniguchi T, Özyilmaz B, Kis A 2017 ACS Nano 11 11678Google Scholar

    [122]

    Luo Y K, Xu J, Zhu T, Wu G, McCormick E J, Zhan W, Neupane M R, Kawakami R K 2017 Nano Lett. 17 3877Google Scholar

    [123]

    Ominato Y, Fujimoto J, Matsuo M 2020 Phys. Rev. Lett. 124 166803Google Scholar

    [124]

    Yu Z M, Guan S, Sheng X L, Gao W, Yang S A 2020 Phys. Rev. Lett. 124 037701Google Scholar

  • [1] Liu En-Ke. Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics. Acta Physica Sinica, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [2] Xiao Cong, Yao Wang. Quantum layertronics in van der Waals systems. Acta Physica Sinica, 2023, 72(23): 237302. doi: 10.7498/aps.72.20231323
    [3] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [4] Preface to the special topic: Physical electronics for brain-inspired computing. Acta Physica Sinica, 2022, 71(14): 140101. doi: 10.7498/aps.71.140101
    [5] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [6] Li Chun-Guang, Wang Jia, Wu Yun, Wang Xu, Sun Liang, Dong Hui, Gao Bo, Li Hao, You Li-Xing, Lin Zhi-Rong, Ren Jie, Li Jing, Zhang Wen, He Qing, Wang Yi-Wen, Wei Lian-Fu, Sun Han-Cong, Wang Hua-Bing, Li Jin-Jin, Qu Ji-Feng. Recent progress of superconducting electronics in China. Acta Physica Sinica, 2021, 70(1): 018501. doi: 10.7498/aps.70.20202121
    [7] Zhang Hua-Lin, He Xin, Zhang Zhen-Hua. Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom. Acta Physica Sinica, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [8] Luo Xiong, Meng Wei-Wei, Chen Guo-Xu-Jia, Guan Xiao-Xi, Jia Shuang-Feng, Zheng He, Wang Jian-Bo. First-principles study of stability, electronic and optical properties of two-dimensional Nb2SiTe4-based materials. Acta Physica Sinica, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [9] Zhang Hao-Zhe, Xu Chun-Yan, Nan Hai-Yan, Xiao Shao-Qing, Gu Xiao-Feng. Research progress of two-dimensional transition metal dichalcogenide phase transition methods. Acta Physica Sinica, 2020, 69(24): 246101. doi: 10.7498/aps.69.20200965
    [10] Wang Dan, Zou Juan, Tang Li-Ming. Stability and electronic structure of hydrogenated two-dimensional transition metal dichalcogenides: First-principles study. Acta Physica Sinica, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [11] Li Ye-Hua, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic properties of InSe nanoribbons terminated with non-metallic atoms and its strain modulation. Acta Physica Sinica, 2019, 68(19): 198503. doi: 10.7498/aps.68.20190547
    [12] Ma Song-Song, Shu Tian-Yu, Zhu Jia-Qi, Li Kai, Wu Hui-Zhen. Recent progress on Ⅳ-Ⅵ compound semiconductor heterojunction two-dimensional electron gas. Acta Physica Sinica, 2019, 68(16): 166801. doi: 10.7498/aps.68.20191074
    [13] Zhou Yu-Zhi. Model and applications of transition metal dichalcogenides based compliant substrate epitaxy system. Acta Physica Sinica, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [14] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [15] Liu Juan, Hu Rui, Fan Zhi-Qiang, Zhang Zhen-Hua. Magneto-electronic properties and mechano-magnetic coupling effects in transition metal-doped armchair boron nitride nanoribbons. Acta Physica Sinica, 2017, 66(23): 238501. doi: 10.7498/aps.66.238501
    [16] Yang Zhen-Qing, Bai Xiao-Hui, Shao Chang-Jin. Density functional theory studies of (TiO2)12 quantum ring and its electronic properties when doped with transition metal compounds. Acta Physica Sinica, 2015, 64(7): 077102. doi: 10.7498/aps.64.077102
    [17] Sun Jia-Tao, Meng Sheng. The valley degree of freedom of an electron. Acta Physica Sinica, 2015, 64(18): 187301. doi: 10.7498/aps.64.187301
    [18] Lin Feng, Li Zuan-Yi, Wang Shan-Ying. Mechanical and electronic properties of TiO2 nanotubes. Acta Physica Sinica, 2009, 58(12): 8544-8548. doi: 10.7498/aps.58.8544
    [19] DUAN WEN-HUI, GU BING-LIN, ZHU JIA-LIN. ELECTRONIC STRUCTURE OF CHALCOGEN COMPOUNDS CdSe, CdTe AND SnSe. Acta Physica Sinica, 1990, 39(3): 437-445. doi: 10.7498/aps.39.437
    [20] CHANG I-MIN. THE PRESENT STATUS OF SOLID STATE ELECTRONICS. Acta Physica Sinica, 1960, 16(8): 431-440. doi: 10.7498/aps.16.431
Metrics
  • Abstract views:  12551
  • PDF Downloads:  1262
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2020
  • Accepted Date:  14 September 2020
  • Available Online:  08 January 2021
  • Published Online:  20 January 2021

/

返回文章
返回