Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Phase-field modeling of irradiated void microstructure evolution of Fe-Cr alloy

Yang Hui Feng Ze-Hua Wang He-Ran Zhang Yun-Peng Chen Zheng Xin Tian-Yuan Song Xiao-Rong Wu Lu Zhang Jing

Citation:

Phase-field modeling of irradiated void microstructure evolution of Fe-Cr alloy

Yang Hui, Feng Ze-Hua, Wang He-Ran, Zhang Yun-Peng, Chen Zheng, Xin Tian-Yuan, Song Xiao-Rong, Wu Lu, Zhang Jing
PDF
HTML
Get Citation
  • As cladding materials, Fe-Cr alloys are used in the extreme environments of high temperature, high pressure, and energetic particle radiation, thus generating irradiation defects such as vacancies and interstitials. The clustering of irradiation defects leads the voids or dislocation loops to form, resulting in irradiation swelling and lattice distortion, and further radiation hardening or softening, finally, material failure. It is beneficial to tailor desired microstructures and obtain stable service performances by understanding defects cluster and voids formation process. In this paper, the phase-field method is employed to study the evolution of voids of Fe-Cr alloy. In the model the temperature effects on point defects and generation/recombination of vacancies and interstitials are taken into consideration. The 400–800 K temperature range and 0–16 dpa radiation dose range are selected, in which the voids’ formation process including generation and recombination, as well as vacancy clustering caused by vacancy diffusion, is studied for Fe-Cr alloy. The nucleation rate of the void cluster shows a trend of first increasing and then decreasing with temperature increasing from 400 to 800 K. This phenomenon is related to complex interactions among defects concentration, atomic diffusion, recombination, nucleation, and growth conditions. At a given temperature, the average radius and the volume fraction of the voids grow bigger as the radiation dose increases. With the increase of irradiation dose, the cascade collision reaction is strengthened, and the number of Frenkel defect pairs is also increases. A large number of vacancies and interstitial atoms are generated, and the rapid diffusion and accumulation of vacancies in the Fe-Cr alloy at high temperature form a larger number and larger size of voids. The incubation period of vacancy clusters and voids are quite different due to the influence of irradiation temperature and dose. The higher the irradiation dose, the shorter the incubation period is. The relationship between the incubation period and temperature is more complicated. When the temperature is relatively low, the incubation period is shortened as the temperature increases, and as the temperature continues to increase to a higher temperature, the incubation period is extended. This relates to the increase in the concentration of vacancies, the recombination of vacancies and interstitials, and the increase of the critical nucleus radius for the growth of voids when the temperature increases.
      Corresponding author: Zhang Jing, Jingzhang@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51704243, 51674205, 51601185), the National Defense Basic Scientific Research Program of China (Grant No. JCKY2017201C016), the China Postdoctoral Science Foundation (Grant No. 2015M582575), and the National Basic Research Program of China (Grant No. 2016YFB07001)
    [1]

    Klueh R L, Nelson A T 2007 J. Nucl. Mater. 371 37Google Scholar

    [2]

    Buongiorno J, Swindeman R, Corwin W, Rowchitte A, McDonald P, Was G, Mansur L, Wikon D, Nanstad R, Wright I 2003 Supercritical Water Reactor (SCWR) : Survey of Materials Experience and R&D Needs to Assess Viability, Idaho National EngineeringLaboratory Report INEEL/EXT-03-00693 (Rev. 1) Idaho September 2003

    [3]

    Sass S L, Eyre B L 1973 Philos. Mag. 27 1447Google Scholar

    [4]

    Une K, Nogita K, Kashibe S, Imamura M 1992 J. Nucl. Mater. 188 65Google Scholar

    [5]

    Nogita K, Une K 1993 J. Nucl. Mater. 91 301

    [6]

    Zacharie I, Lansiart S, Combette P, Trotabas M, Coster M, Groos M 1998 J. Nucl. Mater. 255 92Google Scholar

    [7]

    Katsuyama K, Nagamine T, Matsumoto S, Ito M 2002 J. Nucl. Sci. Technol. 39 804Google Scholar

    [8]

    张娜, 刘波, 林黎蔚 2020 物理学报 69 016101Google Scholar

    Zhang N, Liu B, Lin L W 2020 Acta Phys. Sin. 69 016101Google Scholar

    [9]

    高云亮, 朱芫江, 李进平 2017 物理学报 66 057104Google Scholar

    Gao Y L, Zhu Y J, Li J P 2017 Acta Phys. Sin. 66 057104Google Scholar

    [10]

    Lindhard J, Nielsen V, Scharff M, Thomsen P V 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 706

    [11]

    郁金南 2007 核材料科学与工程——材料辐照效应 (北京: 化学工业出版社) 第198—203页

    Yu J N 2007 Nuclear Materials Science and Engineering Radiation Effects of Materials (Beijing: Chemical Industry Press) pp198–203 (in Chinese)

    [12]

    Becker C H 1972 US Patent 3 657 707 [1972-4-18]

    [13]

    黄鹤飞, 李健健, 刘仁多, 陈怀灿, 闫隆 2014 金属学报 50 1189Google Scholar

    Huang H F, Li J J, Liu R D, Chen H C, Yan L 2014 J. Acta Metall. Sin. 50 1189Google Scholar

    [14]

    丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南 2017 物理学报 66 112501Google Scholar

    Ding Z N, Yang Y T, Song Y, Zhang L Q, Gou J, Zhang C H, Luo G N 2017 Acta Phys. Sin. 66 112501Google Scholar

    [15]

    Lambrecht M, Malerba L 2011 Acta Mater. 59 6547Google Scholar

    [16]

    Reese E R, Almirall N, Yamamoto T 2018 Scr. Mater. 146 213Google Scholar

    [17]

    Liu Y L, Zhang Y, Zhou H B 2009 Phys. Rev. B 79 172103Google Scholar

    [18]

    Zhou H B, Liu Y L, Jin S 2010 Nucl. Fusi. 50 115010Google Scholar

    [19]

    Alkhamees A, Liu Y L, Zhou H B 2009 J. Nucl. Mater. 393 508Google Scholar

    [20]

    梁晋洁, 高宁, 李玉红 2020 物理学报 69 116102Google Scholar

    Liang J J, Gao N, Li Y H 2020 Acta Phys. Sin. 69 116102Google Scholar

    [21]

    朱琪, 王升涛, 赵福祺, 潘昊 2020 物理学报 69 036201Google Scholar

    Zhu Q, Wang S T, Zhao F Q, Pan H 2020 Acta Phys. Sin. 69 036201Google Scholar

    [22]

    梁晋洁, 高宁, 李玉红 2020 物理学报 69 036101Google Scholar

    Liang J J, Gao N, Li Y H 2020 Acta Phys. Sin. 69 036101Google Scholar

    [23]

    梁林云, 吕广宏 2013 物理学报 62 182801Google Scholar

    Liang L Y, Lü G H 2013 Acta Phys. Sin. 62 182801Google Scholar

    [24]

    李然然, 张一帆, 耿殿程, 张高伟, 渡边英雄, 韩文妥, 万发荣 2019 物理学报 68 216101Google Scholar

    Li R R, Zhang Y F, Geng D C, Zhang G W, Watanabe Hideo, Han W T, Wan F R 2019 Acta Phys. Sin. 68 216101Google Scholar

    [25]

    Hu S Y, Henager C H, Heinisch H L 2009 J. Nucl. Mater. 392 292Google Scholar

    [26]

    Rokkam S, El-Azab A, Millett P 2009 Model Simul. Mater.Sci. Eng. 17 064002Google Scholar

    [27]

    Millett P C, Rokkam S, El-Azab A 2009 Model Simul. Mater. Sci. Eng. 17 064003Google Scholar

    [28]

    Zhao B J, Zhao Y H, Sun Y Y, Yang W K, Hou H 2019 Acta Metall. Sin. 55 593

    [29]

    Yan Z W, Shi S J, Li Y S, Chen J, Maqbool S 2020 Phys. Chem. Chem. Phys. 22 3611Google Scholar

    [30]

    Provatas N, Elder K 2010 Phase-field Methods in Materials Science and Engineering (Germany: Weinheim Wiley-VCH) pp2−5

    [31]

    Hu S Y, Henager C H 2010 Acta Mater. 58 3230Google Scholar

    [32]

    Li Y, Hu S, Sun X 2010 J. Nucl. Mater. 407 119Google Scholar

    [33]

    Simeone D, Ribis J, Luneville L 2018 J. Mater. Res. 33 440Google Scholar

    [34]

    Ortiz C J, Caturla M J 2007 Phys. Rev. B 75 184101Google Scholar

    [35]

    Bacon D J, Gao F, Osetsky Y N 2000 J. Nucl. Mater. 276 1Google Scholar

    [36]

    Souidi A, Becquart C S, Domain C 2006 J. Nucl. Mater. 355 89Google Scholar

    [37]

    Boisse J, Domain C, Becquart C S 2014 J. Nucl. Mater. 455 10Google Scholar

    [38]

    徐恒均 2009 材料科学基础(第一版)(北京: 北京工业大学出版社) 第205−214页

    Xu H J 2009 Foundations of Materials Science (Vol.1) (Beijjing: Beijing University of Technology Press) pp205−214 (in Chinese)

    [39]

    Wong K L, Lee H J, Shim J H, Sadigh B, Wirth B D 2009 J. Nucl. Mater 386 227

    [40]

    Norris, D I R 1972 Radiation Effects 14 1Google Scholar

    [41]

    Getto E, Jiao Z, Monterrosa A M 2015 J. Nucl.Mater. 462 458Google Scholar

    [42]

    Toloczko M B, Garner F A, Voyevodin V N 2014 J. Nucl.Mater. 453 323Google Scholar

    [43]

    Brailsford A D, Bullough R, Hayns M R 1978 J. Nucl. Mater. 60 246

  • 图 1  不同辐照温度和剂量下Fe-Cr合金中空洞形貌的变化

    Figure 1.  Morphology evolution of voids of Fe-Cr alloys at different irradiation temperature and dose.

    图 2  Fe-Cr合金空位及间隙原子扩散速度与温度的关系

    Figure 2.  The relationship between the diffusion rate of Fe-Cr alloy vacancies, the interstitial atoms and temperature.

    图 3  Fe-Cr合金中空位浓度、空位-间隙重组率与温度的关系

    Figure 3.  Relationship between vacancy concentration, vacancy-interstitial recombination rate, and temperature in Fe-Cr alloy.

    图 4  Fe-Cr合金在700 K温度下0—16 dpa辐照剂量下空洞的平均半径演化

    Figure 4.  The average radius of the voids of Fe-Cr alloy suffer different irradiation doses at 700 K.

    图 5  Fe-Cr合金在700 K时0—16 dpa不同辐照剂量下空洞的数量演化

    Figure 5.  Void numbers of Fe-Cr alloy suffers different irradiation doses at 700 K.

    图 6  Fe-Cr合金在700 K时空洞数量与辐照剂量的关系

    Figure 6.  Relationship between the number of voids and irradiation dose in Fe-Cr alloy at 700 K.

    图 7  Fe-Cr合金在700 K时空洞形貌随时间和辐照剂量的时间演化

    Figure 7.  Temporal evolution of void in the Fe-Cr alloy at 700 K as functions of time and irradiation dose.

    图 8  Fe-Cr合金在辐照剂量为8 dpa时空洞数量与温度的关系

    Figure 8.  Relationship between the number of voids and temperature in Fe-Cr alloy irradiated at 8 dpa.

    图 9  Fe-Cr合金在辐照剂量为8 dpa时400—800 K温度下的空洞数量

    Figure 9.  Comparison of the number of voids in Fe-Cr alloy at different irradiation temperatures of 8 dpa.

    图 10  Fe-Cr合金在辐照剂量为8 dpa时400—800 K温度下的空洞体积分数

    Figure 10.  Comparison of the results of void volume fractions of Fe-Cr alloy at different irradiation temperatures at 8 dpa.

    表 1  本文模拟使用的物性和模拟参数[33]

    Table 1.  Physical properties and simulation parameters used in this paper[33].

    kB/(eV·K–1)ab0b1b2b3b4MvMiLkcvkci
    8.61733 × 10–58.00.022.850.4–105.452.21.01.01.01.01.0
    DownLoad: CSV
  • [1]

    Klueh R L, Nelson A T 2007 J. Nucl. Mater. 371 37Google Scholar

    [2]

    Buongiorno J, Swindeman R, Corwin W, Rowchitte A, McDonald P, Was G, Mansur L, Wikon D, Nanstad R, Wright I 2003 Supercritical Water Reactor (SCWR) : Survey of Materials Experience and R&D Needs to Assess Viability, Idaho National EngineeringLaboratory Report INEEL/EXT-03-00693 (Rev. 1) Idaho September 2003

    [3]

    Sass S L, Eyre B L 1973 Philos. Mag. 27 1447Google Scholar

    [4]

    Une K, Nogita K, Kashibe S, Imamura M 1992 J. Nucl. Mater. 188 65Google Scholar

    [5]

    Nogita K, Une K 1993 J. Nucl. Mater. 91 301

    [6]

    Zacharie I, Lansiart S, Combette P, Trotabas M, Coster M, Groos M 1998 J. Nucl. Mater. 255 92Google Scholar

    [7]

    Katsuyama K, Nagamine T, Matsumoto S, Ito M 2002 J. Nucl. Sci. Technol. 39 804Google Scholar

    [8]

    张娜, 刘波, 林黎蔚 2020 物理学报 69 016101Google Scholar

    Zhang N, Liu B, Lin L W 2020 Acta Phys. Sin. 69 016101Google Scholar

    [9]

    高云亮, 朱芫江, 李进平 2017 物理学报 66 057104Google Scholar

    Gao Y L, Zhu Y J, Li J P 2017 Acta Phys. Sin. 66 057104Google Scholar

    [10]

    Lindhard J, Nielsen V, Scharff M, Thomsen P V 1963 Mat. Fys. Medd. Dan. Vid. Selsk. 33 706

    [11]

    郁金南 2007 核材料科学与工程——材料辐照效应 (北京: 化学工业出版社) 第198—203页

    Yu J N 2007 Nuclear Materials Science and Engineering Radiation Effects of Materials (Beijing: Chemical Industry Press) pp198–203 (in Chinese)

    [12]

    Becker C H 1972 US Patent 3 657 707 [1972-4-18]

    [13]

    黄鹤飞, 李健健, 刘仁多, 陈怀灿, 闫隆 2014 金属学报 50 1189Google Scholar

    Huang H F, Li J J, Liu R D, Chen H C, Yan L 2014 J. Acta Metall. Sin. 50 1189Google Scholar

    [14]

    丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南 2017 物理学报 66 112501Google Scholar

    Ding Z N, Yang Y T, Song Y, Zhang L Q, Gou J, Zhang C H, Luo G N 2017 Acta Phys. Sin. 66 112501Google Scholar

    [15]

    Lambrecht M, Malerba L 2011 Acta Mater. 59 6547Google Scholar

    [16]

    Reese E R, Almirall N, Yamamoto T 2018 Scr. Mater. 146 213Google Scholar

    [17]

    Liu Y L, Zhang Y, Zhou H B 2009 Phys. Rev. B 79 172103Google Scholar

    [18]

    Zhou H B, Liu Y L, Jin S 2010 Nucl. Fusi. 50 115010Google Scholar

    [19]

    Alkhamees A, Liu Y L, Zhou H B 2009 J. Nucl. Mater. 393 508Google Scholar

    [20]

    梁晋洁, 高宁, 李玉红 2020 物理学报 69 116102Google Scholar

    Liang J J, Gao N, Li Y H 2020 Acta Phys. Sin. 69 116102Google Scholar

    [21]

    朱琪, 王升涛, 赵福祺, 潘昊 2020 物理学报 69 036201Google Scholar

    Zhu Q, Wang S T, Zhao F Q, Pan H 2020 Acta Phys. Sin. 69 036201Google Scholar

    [22]

    梁晋洁, 高宁, 李玉红 2020 物理学报 69 036101Google Scholar

    Liang J J, Gao N, Li Y H 2020 Acta Phys. Sin. 69 036101Google Scholar

    [23]

    梁林云, 吕广宏 2013 物理学报 62 182801Google Scholar

    Liang L Y, Lü G H 2013 Acta Phys. Sin. 62 182801Google Scholar

    [24]

    李然然, 张一帆, 耿殿程, 张高伟, 渡边英雄, 韩文妥, 万发荣 2019 物理学报 68 216101Google Scholar

    Li R R, Zhang Y F, Geng D C, Zhang G W, Watanabe Hideo, Han W T, Wan F R 2019 Acta Phys. Sin. 68 216101Google Scholar

    [25]

    Hu S Y, Henager C H, Heinisch H L 2009 J. Nucl. Mater. 392 292Google Scholar

    [26]

    Rokkam S, El-Azab A, Millett P 2009 Model Simul. Mater.Sci. Eng. 17 064002Google Scholar

    [27]

    Millett P C, Rokkam S, El-Azab A 2009 Model Simul. Mater. Sci. Eng. 17 064003Google Scholar

    [28]

    Zhao B J, Zhao Y H, Sun Y Y, Yang W K, Hou H 2019 Acta Metall. Sin. 55 593

    [29]

    Yan Z W, Shi S J, Li Y S, Chen J, Maqbool S 2020 Phys. Chem. Chem. Phys. 22 3611Google Scholar

    [30]

    Provatas N, Elder K 2010 Phase-field Methods in Materials Science and Engineering (Germany: Weinheim Wiley-VCH) pp2−5

    [31]

    Hu S Y, Henager C H 2010 Acta Mater. 58 3230Google Scholar

    [32]

    Li Y, Hu S, Sun X 2010 J. Nucl. Mater. 407 119Google Scholar

    [33]

    Simeone D, Ribis J, Luneville L 2018 J. Mater. Res. 33 440Google Scholar

    [34]

    Ortiz C J, Caturla M J 2007 Phys. Rev. B 75 184101Google Scholar

    [35]

    Bacon D J, Gao F, Osetsky Y N 2000 J. Nucl. Mater. 276 1Google Scholar

    [36]

    Souidi A, Becquart C S, Domain C 2006 J. Nucl. Mater. 355 89Google Scholar

    [37]

    Boisse J, Domain C, Becquart C S 2014 J. Nucl. Mater. 455 10Google Scholar

    [38]

    徐恒均 2009 材料科学基础(第一版)(北京: 北京工业大学出版社) 第205−214页

    Xu H J 2009 Foundations of Materials Science (Vol.1) (Beijjing: Beijing University of Technology Press) pp205−214 (in Chinese)

    [39]

    Wong K L, Lee H J, Shim J H, Sadigh B, Wirth B D 2009 J. Nucl. Mater 386 227

    [40]

    Norris, D I R 1972 Radiation Effects 14 1Google Scholar

    [41]

    Getto E, Jiao Z, Monterrosa A M 2015 J. Nucl.Mater. 462 458Google Scholar

    [42]

    Toloczko M B, Garner F A, Voyevodin V N 2014 J. Nucl.Mater. 453 323Google Scholar

    [43]

    Brailsford A D, Bullough R, Hayns M R 1978 J. Nucl. Mater. 60 246

  • [1] Liu Zhong-Lei, Cao Jin-Ming, Wang Zhi, Zhao Yu-Hong. Phase-field method explored ferroelectric vortex topology structure and morphotropic phase boundaries. Acta Physica Sinica, 2023, 72(3): 037702. doi: 10.7498/aps.72.20221898
    [2] Wang Kai-Le, Yang Wen-Kui, Shi Xin-Cheng, Hou Hua, Zhao Yu-Hong. Phase-field-method-studied mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy. Acta Physica Sinica, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [3] Jiang Xin-An, Zhao Yu-Hong, Yang Wen-Kui, Tian Xiao-Lin, Hou Hua. Mechanism of internal magnetic energy of Cu-rich phase precipitation in Fe84Cu15Mn1 alloy by phase field method. Acta Physica Sinica, 2022, 71(8): 080201. doi: 10.7498/aps.71.20212087
    [4] Jiang Yan-Bo, Liu Wen-Bo, Sun Zhi-Peng, La Yong-Xiao, Yun Di. Phase-field simulation of void evolution in UO2 under applied stress. Acta Physica Sinica, 2022, 71(2): 026103. doi: 10.7498/aps.71.20211440
    [5] Guo Zhen, Zhao Yu-Hong, Sun Yuan-Yang, Zhao Bao-Jun, Tian Xiao-Lin, Hou Hua. Phase field study of effect of Al on Cu-rich precipitates in Fe-Cu-Mn-Al alloys. Acta Physica Sinica, 2021, 70(8): 086401. doi: 10.7498/aps.70.20201843
    [6] Luo Hai-Bin, Li Jun-Jie, Ma Yuan, Guo Chun-Wen, Wang Jin-Cheng. Phase field modeling of the evolution of partical interface shape distribution during coarsening. Acta Physica Sinica, 2014, 63(2): 026401. doi: 10.7498/aps.63.026401
    [7] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [8] Cui Zhen-Guo, Gou Cheng-Jun, Hou Qing, Mao Li, Zhou Xiao-Song. Computer simulation of radiation damage caused by low energy neutron in zirconium. Acta Physica Sinica, 2013, 62(15): 156105. doi: 10.7498/aps.62.156105
    [9] Wang Ya-Qin, Wang Jin-Cheng, Li Jun-Jie. Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification. Acta Physica Sinica, 2012, 61(11): 118103. doi: 10.7498/aps.61.118103
    [10] Wang Ming-Guang, Zhao Yu-Hong, Ren Juan-Na, Mu Yan-Qing, Wang Wei, Yang Wei-Ming, Li Ai-Hong, Ge Hong-Hao, Hou Hua. Phase-field simulation of Non-Isothermal dendritic growth of NiCu alloy. Acta Physica Sinica, 2011, 60(4): 040507. doi: 10.7498/aps.60.040507
    [11] Long Wen-Yuan, Lü Dong-Lan, Xia Chun, Pan Mei-Man, Cai Qi-Zhou, Chen Li-Liang. Phase-field simulation of non-isothermal solidification dendrite growth of binary alloy under the force flow. Acta Physica Sinica, 2009, 58(11): 7802-7808. doi: 10.7498/aps.58.7802
    [12] Zong Ya-Ping, Wang Ming-Tao, Guo Wei. Phase field simulation on recrystallization and secondary phase precipitation under strain field. Acta Physica Sinica, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [13] Chen Yu-Juan, Chen Chang-Le. Simulation of the influence of convection velocity on upstream dendritic growth using phase-field method. Acta Physica Sinica, 2008, 57(7): 4585-4589. doi: 10.7498/aps.57.4585
    [14] Xiao Zhong-Yin, Wang Ting-Yun, Luo Wen-Yun, Wang Zi-Hua. Mechanism of E′ center formed by irradiation with high energy particles in silica glasses. Acta Physica Sinica, 2008, 57(4): 2273-2277. doi: 10.7498/aps.57.2273
    [15] Li Jun-Jie, Wang Jin-Cheng, Xu Quan, Yang Gen-Cang. Effect of foreign particles on the dendritic growth in phase-field theory. Acta Physica Sinica, 2007, 56(3): 1514-1519. doi: 10.7498/aps.56.1514
    [16] Xiao Zhong-Yin, Luo Wen-Yun, Wang Ting-Yun. Kinetic study of E′ center formed by radiation with low energy particles in high purity silica. Acta Physica Sinica, 2007, 56(5): 2731-2735. doi: 10.7498/aps.56.2731
    [17] Lu Yang, Wang Fan, Zhu Chang-Sheng, Wang Zhi-Ping. Simulation of multiple grains for isothermal solidification of binary alloy using phase-field model. Acta Physica Sinica, 2006, 55(2): 780-785. doi: 10.7498/aps.55.780
    [18] Long Wen-Yuan, Cai Qi-Zhou, Wei Bo-Kang, Chen Li-Liang. Simulation of dendritic growth of multicomponent alloys using phase-field method. Acta Physica Sinica, 2006, 55(3): 1341-1345. doi: 10.7498/aps.55.1341
    [19] Zhang Yu-Xiang, Wang Jin-Cheng, Yang Gen-Cang, Zhou Yao-He. Phase-field simulation of the influence of elastic field on microstructure evolution and equilibrium composition of precipitation. Acta Physica Sinica, 2006, 55(5): 2433-2438. doi: 10.7498/aps.55.2433
    [20] Yang Hong, Zhang Qing-Guang, Chen Min. A phase-field simulation on the influence of thermal fluctuation on secondary branch growth in undercooled melt. Acta Physica Sinica, 2005, 54(8): 3740-3744. doi: 10.7498/aps.54.3740
Metrics
  • Abstract views:  4636
  • PDF Downloads:  103
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2020
  • Accepted Date:  28 September 2020
  • Available Online:  21 February 2021
  • Published Online:  05 March 2021

/

返回文章
返回