Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Arbitrary-order high-operation constant fractance approximation circuit—lattice cascaded two-port network

Zhang Yue-Rong Yuan Xiao

Citation:

Arbitrary-order high-operation constant fractance approximation circuit—lattice cascaded two-port network

Zhang Yue-Rong, Yuan Xiao
PDF
HTML
Get Citation
  • Fractional calculus is widely used in the analysis and description of various nonlinear and non-integer dimensional physical phenomena and processes in nature, and it gradually becomes a research hotspot. The order value of fractional-order system is more flexible, and fractional-order system is more accurate for analysis of non-integer dimensional physical phenomena and processes. In recent years, various negative half-order fractance approximation circuits and rational approximation algorithms for negative half-order fractional operators have been proposed and aroused people's research interest. The scaling extension of classic negative half-order fractance approximation circuits can facilitate the design of fractance approximation circuits with arbitrary-order fractional operators, but the operational constancy is sacrificed. The typical arbitrary-order fractance approximation circuits have operational oscillating phenomena in frequency domain, both the order-frequency characteristic curves and the phase-frequency characteristic curves have obvious oscillating waveforms. The operational oscillating phenomena will inevitably affect the fractional operator operational performance of the fractance approximation circuits, and result in errors in physical application. In this paper, the negative half-order Carlson fractal-lattice fractance approximation circuit with constant operational performance is analyzed from perspective of circuit network, the symmetry for equivalent two-port network of Carlson fractal-lattice fractance approximate circuit is analyzed. The equivalent two-port network of scaling fractal-lattice fractance approximation circuit is explored, Operational validity for the right port of scaling lattice cascaded two-port network is studied. A symmetrical lattice cascaded passive two-port network after scaling extension is designed through cascade of the ports on both sides of two-port network, and an arbitrary-order scaling fractal-lattice fractance approximation circuit with high-operation constancy is designed. By studying the zero-pole distribution and localization characteristics of the negative real zero-pole pair elemental unit, the physical nature of operational oscillating phenomenon for scaling fractal-lattice fractance approximation circuit with the operational performance of arbitrary-order fractional operator is explained theoretically, the methods and ideas to effectively suppress frequency-domain operational oscillating phenomenon are theoretically analyzed. The physical nature of operational oscillating amplitude reduction is explained by contrastively analyzing the pole-zero distributions of scaling fractal-lattice fractance approximation circuit and symmetrical lattice cascaded two-port network. According to the optimization principle of arbitrary-order fractance approximation circuits, the symmetrical resistor-capacitor T-section circuit optimization methods are used to optimize the frequency-domain approximation performance of any real-order symmetrical lattice cascaded two-port network, and it contributes to obtain any real-order scaling fractal-lattice fractance approximation circuit with high benefit of approximation. Arbitrary-order symmetrical lattice cascaded two-port network provides methods and ideas for the design of fractance approximation circuits with high-operation constancy.
      Corresponding author: Yuan Xiao, yuanxiao@scu.edu.cn
    [1]

    Karamali G, Dehghan M, Abbaszadeh M 2019 Eng. Comput.-Germany. 35 87Google Scholar

    [2]

    Oldham K B 1991 J. Appl. Electrochem. 21 1068Google Scholar

    [3]

    Su Y, Wang Y 2019 J. Funct. Space 2019 1

    [4]

    Hamrouni W, Abdennadher A 2016 Discrete Cont. Dyn-B 21 2509Google Scholar

    [5]

    Wu G C, Baleanu D, Deng Z G, Zeng S D 2015 Physica A 438 335Google Scholar

    [6]

    Hamed E M, Said L A, Madian A H, Radwan A G 2020 Circ. Syst. Signal Pr. 39 2Google Scholar

    [7]

    Ali Yüce, Tan N 2020 J. Eng. 2020 157Google Scholar

    [8]

    Subhadhra K S, Sharma R K, Gupta S S 2020 Analog Integr. Circuits Signal Process. 103 31Google Scholar

    [9]

    Hamed E M, Said L A, Madian A H, Radwan A G 2020 Circuits, Systems, and Signal Processing 39 2

    [10]

    Yu B, Pu Y F, He Q Y 2020 J. Circuits Syst. Comput. 29 2050083Google Scholar

    [11]

    Atan O 2018 Analog Integr. Circuits Signal Process. 96 485Google Scholar

    [12]

    Mahmoud G M, Abed-Elhameed T M, Ahmed M E 2016 Nonlinear Dyn. 83 1885Google Scholar

    [13]

    Yang S, Yu J, Hu C, Jiang H 2018 Neural Networks 104 104Google Scholar

    [14]

    袁晓 2015 分抗逼近电路之数学原理 (北京: 科学出版社) 第3—15

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp3–15 (in Chinese)

    [15]

    Dutta R, Suhash C, Shenoi B A 1966 J. Franklin Inst. 282 318Google Scholar

    [16]

    Oldham K B 1973 Anal. Chem. 45 39

    [17]

    袁子, 袁晓 2017 电子学报 45 2511Google Scholar

    Yuan Z, Yuan X 2017 Acta Electron. Sin. 45 2511Google Scholar

    [18]

    Hill R M, Dissado L A, Nigmatullin R R 1991 J. Phys. Condens. Matter 3 9773Google Scholar

    [19]

    Liu S H 1985 Phys. Rev. Lett. 55 529Google Scholar

    [20]

    He Q Y, Pu Y F, Yu B, Yuan X 2019 Circuits Syst. Signal Process. 38 4933Google Scholar

    [21]

    何秋燕, 袁晓 2016 物理学报 65 160202Google Scholar

    He Q Y, Yuan X 2016 Acta Phys. Sin. 65 160202Google Scholar

    [22]

    He Q Y, Yu B, Yuan X 2017 Chin. Phys. B 26 040202Google Scholar

    [23]

    He Q Y, Pu Y F, Yu B 2020 Acta Autom. Sin. 7 1425Google Scholar

    [24]

    袁晓, 冯国英 2015 中国电子学会电路与系统分会第二十六届学术年会论文集 中国长沙, 2015年10月23日−26日 第295页

    Yuan X, Feng G Y 2015 Proceedings of the 26 th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23−26, 2015 p295

    [25]

    余波, 何秋燕, 袁晓 2018 物理学报 67 070202Google Scholar

    Yu B, He Q Y, Yuan X 2018 Acta Phys. Sin. 67 070202Google Scholar

    [26]

    余波, 何秋燕, 袁晓, 杨丽贤 2018 四川大学学报(自然科学版) 55 301Google Scholar

    Yu B, He Q Y, Yuan X, Yang L X 2018 J. Sichuan Univ.(Nat. Sci. Ed.) 55 301Google Scholar

    [27]

    Herzel F, Osmany S A, Scheytt J C 2010 IEEE Trans. Circuits Syst. Regul. Rap. 57 1914Google Scholar

  • 图 1  有限k节Carlson格型分抗逼近电路 (a) 归一化原型电路; (b) 等效双口网络

    Figure 1.  Finite k-stage Carlson Lattice fractance approximation circuit: (a) Normalized prototype circuit; (b) equivalent two-port network

    图 2  Carlson分形格分抗逼近电路的运算特征曲线 (a) 阶频特征曲线; (b) 相频特征曲线

    Figure 2.  Operational characteristic curves of Carlson fractal-lattice fractance approximation circuit: (a) Order-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 3  k节标度分形格分抗逼近电路 (a) 归一化原型电路; (b) 等效双口网络

    Figure 3.  k-stage scaling fractal-lattice fractance approximation circuit: (a) Normalized prototype circuit; (b) equivalent two-port network

    图 4  正比拓展时左侧端口分抗与右侧端口分抗的运算特征曲线($ k=12, \sigma =5 $) (a) 阶频特征曲线; (b) 相频特征曲线

    Figure 4.  Operational characteristic curves of left-side port fractance and right-side port fractance in direct proportion extension (k = 12, σ = 5): (a) Order-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 5  等效格型级联双口网络N

    Figure 5.  Equivalent lattice cascaded two-port network N.

    图 6  标度分形格分抗与新网络N的运算特征曲线($ k\to {\infty }, \sigma =5 $) (a) 阶频特征曲线; (b) 相频特征曲线

    Figure 6.  Operational characteristic curves of scaling fractal-lattice fractance and new network N ($ k\to {\infty }, \sigma =5 $): (a) Order-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 7  新网络N的归一化电路原理图

    Figure 7.  Normalized circuit schematic diagram of new network N.

    图 8  新网络N与标度分形格分抗运算特征曲线对比图($ k=8, \sigma =5 $) (a) 阶频特征曲线; (b) 相频特征曲线

    Figure 8.  Comparison diagram of operational characteristic curves of new network N and scaling fractal-lattice fractance (k = 8, σ = 5): (a) Order-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 9  一次子系统的运算特征曲线

    Figure 9.  Operational characteristic curves of primary sub-system.

    图 10  (a) 正比拓展左侧分抗零极点指数(黑色)与右侧分抗的零极点指数(绿色)分布对比图; (b) 正比拓展左侧分抗零极点指数(黑色)与新网络N的零极点指数(红色)对比图

    Figure 10.  (a) The distribution comparison diagram of zero-pole exponents (black) of left-side fractance and zero-pole exponents (green) of right-side fractance in direct proportion extension; (b) the distribution comparison diagram of zero-pole exponents (black) of left-side fractance and zero-pole exponents (red) of new network N.

    图 11  新双口网络N的电路优化原理图 (a) 正比拓展优化; (b) 反比拓展优化

    Figure 11.  Circuit optimization principle diagram of new two-port network N: (a) Optimization in direct proportion extension; (b) optimization in inverse proportion extension.

    图 12  阶频特征曲线优化对比图 (a) 正比拓展优化 ($ k=8, \sigma =5 $); (b) 反比拓展优化 ($ k=8, \sigma =1/5 $)

    Figure 12.  Optimization comparison diagram of order-frequency characteristic curves: (a) Optimization in direct proportion extension ($ k=8, \sigma =5 $); (b) optimization in inverse proportion extension ($ k=8, \sigma =1/5 $).

    图 13  模拟电路仿真的频域曲线对比图 (a) 幅频特征曲线; (b) 相频特征曲线

    Figure 13.  Frequency-domain curves comparison diagram of analog circuits: (a) Amplitude-frequency characteristic curves; (b) phase-frequency characteristic curves.

    图 14  半阶微分运算电路原理图

    Figure 14.  Schematic diagram of half-order differential operational circuit.

    图 15  周期对称方波的半阶微分运算 (a) 理论结果; (b) 模拟电路仿真结果

    Figure 15.  The half-order differential operation of a periodic symmetrical square wave: (a) Theoretical result; (b) analog circuit simulation result

  • [1]

    Karamali G, Dehghan M, Abbaszadeh M 2019 Eng. Comput.-Germany. 35 87Google Scholar

    [2]

    Oldham K B 1991 J. Appl. Electrochem. 21 1068Google Scholar

    [3]

    Su Y, Wang Y 2019 J. Funct. Space 2019 1

    [4]

    Hamrouni W, Abdennadher A 2016 Discrete Cont. Dyn-B 21 2509Google Scholar

    [5]

    Wu G C, Baleanu D, Deng Z G, Zeng S D 2015 Physica A 438 335Google Scholar

    [6]

    Hamed E M, Said L A, Madian A H, Radwan A G 2020 Circ. Syst. Signal Pr. 39 2Google Scholar

    [7]

    Ali Yüce, Tan N 2020 J. Eng. 2020 157Google Scholar

    [8]

    Subhadhra K S, Sharma R K, Gupta S S 2020 Analog Integr. Circuits Signal Process. 103 31Google Scholar

    [9]

    Hamed E M, Said L A, Madian A H, Radwan A G 2020 Circuits, Systems, and Signal Processing 39 2

    [10]

    Yu B, Pu Y F, He Q Y 2020 J. Circuits Syst. Comput. 29 2050083Google Scholar

    [11]

    Atan O 2018 Analog Integr. Circuits Signal Process. 96 485Google Scholar

    [12]

    Mahmoud G M, Abed-Elhameed T M, Ahmed M E 2016 Nonlinear Dyn. 83 1885Google Scholar

    [13]

    Yang S, Yu J, Hu C, Jiang H 2018 Neural Networks 104 104Google Scholar

    [14]

    袁晓 2015 分抗逼近电路之数学原理 (北京: 科学出版社) 第3—15

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp3–15 (in Chinese)

    [15]

    Dutta R, Suhash C, Shenoi B A 1966 J. Franklin Inst. 282 318Google Scholar

    [16]

    Oldham K B 1973 Anal. Chem. 45 39

    [17]

    袁子, 袁晓 2017 电子学报 45 2511Google Scholar

    Yuan Z, Yuan X 2017 Acta Electron. Sin. 45 2511Google Scholar

    [18]

    Hill R M, Dissado L A, Nigmatullin R R 1991 J. Phys. Condens. Matter 3 9773Google Scholar

    [19]

    Liu S H 1985 Phys. Rev. Lett. 55 529Google Scholar

    [20]

    He Q Y, Pu Y F, Yu B, Yuan X 2019 Circuits Syst. Signal Process. 38 4933Google Scholar

    [21]

    何秋燕, 袁晓 2016 物理学报 65 160202Google Scholar

    He Q Y, Yuan X 2016 Acta Phys. Sin. 65 160202Google Scholar

    [22]

    He Q Y, Yu B, Yuan X 2017 Chin. Phys. B 26 040202Google Scholar

    [23]

    He Q Y, Pu Y F, Yu B 2020 Acta Autom. Sin. 7 1425Google Scholar

    [24]

    袁晓, 冯国英 2015 中国电子学会电路与系统分会第二十六届学术年会论文集 中国长沙, 2015年10月23日−26日 第295页

    Yuan X, Feng G Y 2015 Proceedings of the 26 th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23−26, 2015 p295

    [25]

    余波, 何秋燕, 袁晓 2018 物理学报 67 070202Google Scholar

    Yu B, He Q Y, Yuan X 2018 Acta Phys. Sin. 67 070202Google Scholar

    [26]

    余波, 何秋燕, 袁晓, 杨丽贤 2018 四川大学学报(自然科学版) 55 301Google Scholar

    Yu B, He Q Y, Yuan X, Yang L X 2018 J. Sichuan Univ.(Nat. Sci. Ed.) 55 301Google Scholar

    [27]

    Herzel F, Osmany S A, Scheytt J C 2010 IEEE Trans. Circuits Syst. Regul. Rap. 57 1914Google Scholar

  • [1] Yu Bo, He Qiu-Yan, Yuan Xiao. Scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equation. Acta Physica Sinica, 2018, 67(7): 070202. doi: 10.7498/aps.67.20171671
    [2] He Qiu-Yan, Yuan Xiao. Carlson iterating and rational approximation of arbitrary order fractional calculus operator. Acta Physica Sinica, 2016, 65(16): 160202. doi: 10.7498/aps.65.160202
    [3] Liu Shi-Da, Fu Zun-Tao, Liu Shi-Kuo. Fractional derivative dynamics of intermittent turbulence. Acta Physica Sinica, 2014, 63(7): 074701. doi: 10.7498/aps.63.074701
    [4] Diao Li-Jie, Zhang Xiao-Fei, Chen Di-Yi. Fractional-order multiple RLαCβ circuit. Acta Physica Sinica, 2014, 63(3): 038401. doi: 10.7498/aps.63.038401
    [5] Li Li-Xiang, Peng Hai-Peng, Luo Qun, Yang Yi-Xian, Liu Zhe. Problem and analysis of stability decidable theory for a class of fractional order nonlinear system. Acta Physica Sinica, 2013, 62(2): 020502. doi: 10.7498/aps.62.020502
    [6] Hu Jian-Bing, Zhao Ling-Dong. Stability theorem and control of fractional systems. Acta Physica Sinica, 2013, 62(24): 240504. doi: 10.7498/aps.62.240504
    [7] Ma Jing-Jie, Xia Hui, Tang Gang. Dynamic scaling behavior of the space-fractional stochastic growth equation with correlated noise. Acta Physica Sinica, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [8] Li Dong, Deng Liang-Ming, Du Yong-Xia, Yang Yuan-Yuan. Synchronization for fractional order hyperchaotic Chen system and fractional order hyperchaotic Rssler system with different structure. Acta Physica Sinica, 2012, 61(5): 050502. doi: 10.7498/aps.61.050502
    [9] Fang Gui-Juan, Sun Shun-Hong, Pu Ji-Xiong. Experimental study on fractional double-vortex beams. Acta Physica Sinica, 2012, 61(6): 064210. doi: 10.7498/aps.61.064210
    [10] Sun Ning, Zhang Hua-Guang, Wang Zhi-Liang. Fractional sliding mode surface controller for projective synchronization of fractional hyperchaotic systems. Acta Physica Sinica, 2011, 60(5): 050511. doi: 10.7498/aps.60.050511
    [11] Hu Jian-Bing, Xiao Jian, Zhao Ling-Dong. Synchronizing fractional chaotic systems with different orders. Acta Physica Sinica, 2011, 60(11): 110515. doi: 10.7498/aps.60.110515
    [12] Zhao Ling-Dong, Hu Jian-Bing, Bao Zhi-Hua, Zhang Guo-An, Xu Chen, Zhang Shi-Bing. A finite-time stable theorem about fractional systems and finite-time synchronizing fractional super chaotic Lorenz systems. Acta Physica Sinica, 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [13] Huang Li-Lian, He Shao-Jie. Stability of fractional state space system and its application to fractional order chaotic system. Acta Physica Sinica, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [14] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. A stability theorem about fractional systems and synchronizing fractional unified chaotic systems based on the theorem. Acta Physica Sinica, 2009, 58(7): 4402-4407. doi: 10.7498/aps.58.4402
    [15] Zhao Pin-Dong, Zhang Xiao-Dan. Study on a class of chaotic systems with fractional order. Acta Physica Sinica, 2008, 57(5): 2791-2798. doi: 10.7498/aps.57.2791
    [16] Wang Xing-Yuan, He Yi-Jie. Projective synchronization of the fractional order unified system. Acta Physica Sinica, 2008, 57(3): 1485-1492. doi: 10.7498/aps.57.1485
    [17] Hu Jian-Bing, Han Yan, Zhao Ling-Dong. Synchronizing fractional chaotic systems based on Lyapunov equation. Acta Physica Sinica, 2008, 57(12): 7522-7526. doi: 10.7498/aps.57.7522
    [18] Zhang Ruo-Xun, Yang Shi-Ping. Synchronization of fractional-order chaotic systems with different structures. Acta Physica Sinica, 2008, 57(11): 6852-6858. doi: 10.7498/aps.57.6852
    [19] Wang Fa-Qiang, Liu Chong-Xin. Study on the critical chaotic system with fractional order and circuit experiment. Acta Physica Sinica, 2006, 55(8): 3922-3927. doi: 10.7498/aps.55.3922
    [20] Chang Fu-Xuan, Chen Jin, Huang Wei. Anomalous diffusion and fractional advection-diffusion equation. Acta Physica Sinica, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
Metrics
  • Abstract views:  2993
  • PDF Downloads:  30
  • Cited By: 0
Publishing process
  • Received Date:  03 September 2020
  • Accepted Date:  02 October 2020
  • Available Online:  05 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回