Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode

Li Ti-Jun Cui Sui-Han Liu Liang-Liang Li Xiao-Yuan Wu Zhong-Can Ma Zheng-Yong Ricky K. Y. Fu Tian Xiu-Bo Paul K. Chu Wu Zhong-Zhen

Citation:

Magnetic field optimization and high-power discharge characteristics of cylindrical sputtering cathode

Li Ti-Jun, Cui Sui-Han, Liu Liang-Liang, Li Xiao-Yuan, Wu Zhong-Can, Ma Zheng-Yong, Ricky K. Y. Fu, Tian Xiu-Bo, Paul K. Chu, Wu Zhong-Zhen
PDF
HTML
Get Citation
  • High-power pulsed magnetron sputtering (HiPIMS) can produce high density and high adhesion coatings due to the high ionization. However, industrial application of HiPIMS is limited because of the unstable discharge and small deposition rate. A cylindrical cathode, developed on the basis of hollow cathode effect, can improve the discharge stability. With the development of electromagnetic systems, the plasma transport is improved, and thus increasing the deposition rate significantly. However, the introduction of electromagnetic system leads the strong discharge and large etching area on the target to be incompatibly controlled. In this work, the distribution of the tangential and longitudinal magnetic field on the target surface are improved by adding external magnets, and their effects on the plasma discharge are studied. By optimizing the magnets, the tangential magnetic field on the target surface becomes stronger and more uniform. Meanwhile, the peak of the longitudinal magnetic field increases from 73 to 96 mT and the peak location expands to two-sides of the cathode. The simulation result shows that the target etching area described by the proportion of the target area with the tangential magnetic field intensity higher than 40 mT increases from 51% to 67%, and the HiPIMS discharge studied by the particle in cell/Monte Carlo collision (PIC/MCC) method and plasma global model shows that the ion current and spectral intensity are significantly enhanced, exhibiting a doubled Cr density of 2.6 × 1020 m–3 and an increased ionization from 90% to 92.1%. The practical Ar/Cr HiPIMS discharge is carried out separately with the original and optimized cylindrical cathode, and the results reveal that the brightness of plasma glow, the target current and the etching area all increase after the improvement. Furthermore, the ion current and the optical emission spectrum suggest that the flux of ions arriving at the substrate is approximately doubled, which means that an about doubled deposition rate of the optimized cathode is achievable.
      Corresponding author: Wu Zhong-Zhen, wuzz@pkusz.edu.cn
    • Funds: Project supported by the Postdoctoral Innovative Talent Support Program, China (Grant No. BX20190001), City University of Hong Kong Strategic Research Grant (SRG) (Grant No. 7005264), and Guangdong-Hong Kong Technology Cooperation Funding Scheme (TCFS) (Grant No. GHP/085/18SZ).
    [1]

    Bohlmark J, Alami J, Christou C, Ehiasarian A P, Helmersson U 2005 J. Vac. Sci. Technol. A23 18Google Scholar

    [2]

    吴忠振, 田修波, 潘锋, 傅劲裕, 朱剑豪 2014 物理学报 63 185207Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 63 185207Google Scholar

    [3]

    Fernandes F, Calderon V S, Ferreira P J, Cavaleiro A, Oliveira J C 2020 Surf. Coat. Technol. 397 125996Google Scholar

    [4]

    Yang F C, Lin C Y, Tang J F, Chang C L 2020 Surf. Coat. Technol. 388 125579Google Scholar

    [5]

    Liu L L, Tang W, Zhou L, Wu Z C, Ruan Q D, Li X Y, Qasim A M, Wu Z Z, Chu P K 2020 Ceram Int. 46 10814Google Scholar

    [6]

    Anders A 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [7]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591Google Scholar

    [8]

    肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 物理学报 65 185202Google Scholar

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202Google Scholar

    [9]

    崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋 2017 物理学报 66 095203Google Scholar

    Cui S H., Wu Z Z, Xiao S, Liu L L, Zheng B C, Lin H, Fu Ricky K Y, Tian X B, Chu P K, Tan W C, Pan F 2017 Acta Phys. Sin. 66 095203Google Scholar

    [10]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H., Wu Z Z, Lin H, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [11]

    汪天龙, 邱清泉, 靖立伟, 张小波 2018 物理学报 67 070703Google Scholar

    Wang T L, Qiu Q Q, Jing L W, Zhang X B 2018 Acta Phys. Sin. 67 070703Google Scholar

    [12]

    Mishra A, Kelly P J, Bradley J W 2010 Plasma Sources Sci. Technol. 19 045014Google Scholar

    [13]

    Luo H, Gao F, Billard A 2019 Surf. Coat. Technol. 374 822Google Scholar

    [14]

    Mischker F, Prenzel M, Benedikt J, et al. 2013 J. Phys. D: Appl. Phys. 46 495201Google Scholar

    [15]

    Čapek J, Hála M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301Google Scholar

    [16]

    Ganesan R, Akhavan B, Dong X, McKenzie D R, Bilek M M M 2018 Surf. Coat. Technol. 352 671Google Scholar

    [17]

    赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 物理学报 50 1528Google Scholar

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528Google Scholar

    [18]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Chen L, Li T J, Fu R K Y, Chu P K, Tian X B, Tan W C, Fang D N, Pan F 2020 J. Appl. Phys. 127 23301Google Scholar

    [19]

    Dawson J M 1983 Rev. Mod. Phys. 5 5Google Scholar

    [20]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 8 7Google Scholar

    [21]

    Liebig B, Bradley J W 2013 Plasma Sources SCI. T. 22 045020Google Scholar

    [22]

    Debel F, Cammarate F. 1998 J. Phys D:. Appl. Phys. 31 31Google Scholar

    [23]

    Shidoji E, Masaharn N J. 1994 Jpn. J. Appl. Phys. 33 4281Google Scholar

    [24]

    Qiu Q Q, Li Q F, Su J J 2008 Plasma Sources Sci. Technol. 10 694Google Scholar

    [25]

    Bohlmark J, Gudmundsson J T, Alami J 2005 IEEE Trans. Plasma Sci. 33 346Google Scholar

    [26]

    Qiu Q Q, Li Q F, Su J J 2008 IEEE Trans. Plasma Sci. 36 1899Google Scholar

    [27]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H Ji S P, Tian X B, Fu R K Y, Chu P K 2015 AIP Adv. 5 097178Google Scholar

    [28]

    Anders A 2008 Appl. Phys. Lett. 92 201501Google Scholar

    [29]

    Hecimovic A, Ehiasarian A P 2009 J. Phys D: Appl. 42 135209Google Scholar

    [30]

    Konstantinidis S, Dauchot J P, Ganciu M 2006 Appl. Phys. Lett. 88 021501Google Scholar

    [31]

    Duquenne C, Tessier P Y, Besland M P 2008 J. Appl. Phys. 104 063301Google Scholar

    [32]

    Ogneva É Y, Raikhbaum Y D, Ognev B R 1972 J. Appl Spectrosc. 17 971Google Scholar

  • 图 1  筒形溅射阴极结构示意图

    Figure 1.  Schematic diagram of the cylindrical cathode.

    图 2  线圈电流对靶面磁场的作用规律 (a) 对切向磁场强度Bz的影响; (b)对法向磁场强度Br的影响

    Figure 2.  Effects of coil current on the target magnetic field: (a) Tangential magnetic field strength Bz; (b) longitudinal magnetic field strength Br.

    图 3  –15 A条件下筒形溅射阴极磁铁排布示意图及其内部磁感线分布 (a), (d)优化前; (b), (e) 增加中央磁铁; (c), (f)含有中央磁场和同极小磁铁

    Figure 3.  Magnet arrangement and magnetic induction lines distributions in the cylindrical cathode under –15 A: (a), (d) Before improvement; (b), (e) with the central magnets; (c), (f) with the central magnets and dipole magnets.

    图 4  中央磁铁磁极强度对靶面磁感应强度的影响 (a) 对切向磁感应强度Bz的影响; (b) 对法向磁感应场Br的影响

    Figure 4.  Effects of central magnets strength on magnetic induction lines distribution of target surface: (a) Tangential magnetic field strength Bz; (b) longitudinal magnetic field strength Br.

    图 5  同极小磁铁磁极强度对靶面磁感应强度的影响 (a) 对切向磁感应强度Bz的影响; (b) 对法向磁感应场Br的影响

    Figure 5.  Effects of dipole magnets strength on magnetic induction lines distribution of target surface: (a) Effects on tangential magnetic field strength Bz; (b) effects on longitudinal magnetic field strength Br.

    图 6  中央磁铁与靶后端面距离对靶面磁场强度的影响 (a) 对切向磁感应强度Bz的影响; (b) 对法向磁感应场Br的影响

    Figure 6.  Effects of distance between the central magnets and the rear face of target on magnetic induction lines distribution of target surface: (a) Tangential magnetic field strength Bz; (b) longitudinal magnetic field strength Br.

    图 7  优化前和优化后靶面磁场分布及放电预测 (a), (b) 切向磁场Bz分布; (c), (d) 法向磁场Br分布; (e), (f) 0.4 μs时放电Ar+离子密度分布

    Figure 7.  The magnetic distribution of target surface and the discharge prediction before and after improvement: (a), (b) The tangential magnetic field strength Bz; (c), (d) the longitudinal magnetic field strength Br; (e), (f) the distributions of Ar+ ions at 0.4 μs.

    图 8  靶面放电宽度及强度图 (a)优化前和(b)优化后放电宽度; (c)优化前和(d)优化后放电辉光图

    Figure 8.  The etching width and plasma flow pictures: The etching width (a) before and (b) after the improvement; the plasma flow pictures (c) before and (d) after the improvement.

    图 9  不同电压下靶电压、靶电流及离子电流 优化前的 (a)靶电压、(c)靶电流及(e)离子电流曲线; 优化后的(b)靶电压、(d)靶电流及(f)离子电流曲线

    Figure 9.  Target voltage, target current and ion current curves under different target voltages: (a), (c), (e) Before the improvement; (b), (d), (f) after the improvement.

    图 10  (a) 金属粒子浓度; (b) 离化率及电子温度变化图

    Figure 10.  (a) Metal particle concentration; (b) ionization rate and electron temperature before and after the improvement.

    图 11  中央轴处的原子发射光谱(OES)强度 (a) 优化前光谱强度; (b)优化后光谱强度

    Figure 11.  The OES intensity at the center axis of cylindrical cathode: (a) Before the improvement; (b) after the improvement.

    表 1  Ar气放电的主要反应表

    Table 1.  The main reactions of simple Ar gas discharge.

    反应方程式反应能量/eV反应类型
    ${{{\rm e}}} + {{\rm Ar}} \to {{\rm Ar}} + {{{\rm e}}}$弹性
    ${{{\rm e}}} + {{\rm Ar}} \to {{\rm A}}{{{\rm r}}^ + } + 2{{{\rm e}}}$15.76电离
    ${{{\rm e}}} + {{\rm Ar}} \to {{\rm A}}{{{\rm r}}^m} + {{{\rm e}}}$11.56激发
    ${{{\rm e}}} + {\operatorname{Ar} ^m} \to {{\rm Ar}} + {{{\rm e}}}$–11.56退激发
    ${{{\rm e}}} + {{\rm A}}{{{\rm r}}^m} \to {{\rm A}}{{{\rm r}}^ + } + 2{{{\rm e}}}$4.2电离
    ${{\rm A}}{{{\rm r}}^ + } + {{\rm Ar}} \to {{\rm A}}{{{\rm r}}^ + } + {{\rm Ar}}$弹性
    ${{\rm A}}{{{\rm r}}^ + } + {{\rm Ar}} \to {{\rm Ar}} + {{\rm A}}{{{\rm r}}^ + }$电荷交换
    DownLoad: CSV
  • [1]

    Bohlmark J, Alami J, Christou C, Ehiasarian A P, Helmersson U 2005 J. Vac. Sci. Technol. A23 18Google Scholar

    [2]

    吴忠振, 田修波, 潘锋, 傅劲裕, 朱剑豪 2014 物理学报 63 185207Google Scholar

    Wu Z Z, Tian X B, Pan F, Fu R K Y, Chu P K 2014 Acta Phys. Sin. 63 185207Google Scholar

    [3]

    Fernandes F, Calderon V S, Ferreira P J, Cavaleiro A, Oliveira J C 2020 Surf. Coat. Technol. 397 125996Google Scholar

    [4]

    Yang F C, Lin C Y, Tang J F, Chang C L 2020 Surf. Coat. Technol. 388 125579Google Scholar

    [5]

    Liu L L, Tang W, Zhou L, Wu Z C, Ruan Q D, Li X Y, Qasim A M, Wu Z Z, Chu P K 2020 Ceram Int. 46 10814Google Scholar

    [6]

    Anders A 2011 Surf. Coat. Technol. 205 S1Google Scholar

    [7]

    Samuelsson M, Lundin D, Jensen J, Raadu M A, Gudmundsson J T, Helmersson U 2010 Surf. Coat. Technol. 205 591Google Scholar

    [8]

    肖舒, 吴忠振, 崔岁寒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 潘锋, 朱剑豪 2016 物理学报 65 185202Google Scholar

    Xiao S, Wu Z Z, Cui S H, Liu L L, Zheng B C, Lin H, Fu J Y, Tian X B, Pan F, Chu P K 2016 Acta Phys. Sin. 65 185202Google Scholar

    [9]

    崔岁寒, 吴忠振, 肖舒, 刘亮亮, 郑博聪, 林海, 傅劲裕, 田修波, 朱剑豪, 谭文长, 潘锋 2017 物理学报 66 095203Google Scholar

    Cui S H., Wu Z Z, Xiao S, Liu L L, Zheng B C, Lin H, Fu Ricky K Y, Tian X B, Chu P K, Tan W C, Pan F 2017 Acta Phys. Sin. 66 095203Google Scholar

    [10]

    崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长 2019 物理学报 68 195204Google Scholar

    Cui S H., Wu Z Z, Lin H, Xiao S, Chen L, Li T J, Liu L L, Fu R K Y, Tian X B, Chu P K, Tan W C 2019 Acta Phys. Sin. 68 195204Google Scholar

    [11]

    汪天龙, 邱清泉, 靖立伟, 张小波 2018 物理学报 67 070703Google Scholar

    Wang T L, Qiu Q Q, Jing L W, Zhang X B 2018 Acta Phys. Sin. 67 070703Google Scholar

    [12]

    Mishra A, Kelly P J, Bradley J W 2010 Plasma Sources Sci. Technol. 19 045014Google Scholar

    [13]

    Luo H, Gao F, Billard A 2019 Surf. Coat. Technol. 374 822Google Scholar

    [14]

    Mischker F, Prenzel M, Benedikt J, et al. 2013 J. Phys. D: Appl. Phys. 46 495201Google Scholar

    [15]

    Čapek J, Hála M, Zabeida O, Klemberg-Sapieha J E, Martinu L 2012 J. Appl. Phys. 111 023301Google Scholar

    [16]

    Ganesan R, Akhavan B, Dong X, McKenzie D R, Bilek M M M 2018 Surf. Coat. Technol. 352 671Google Scholar

    [17]

    赖建军, 余建华, 黄建军, 王新兵, 丘军林 2001 物理学报 50 1528Google Scholar

    Lai J J, Yu J H, Huang J J, Wang X B, Qiu J L 2001 Acta Phys. Sin. 50 1528Google Scholar

    [18]

    Cui S H, Wu Z Z, Lin H, Xiao S, Zheng B C, Chen L, Li T J, Fu R K Y, Chu P K, Tian X B, Tan W C, Fang D N, Pan F 2020 J. Appl. Phys. 127 23301Google Scholar

    [19]

    Dawson J M 1983 Rev. Mod. Phys. 5 5Google Scholar

    [20]

    Vahedi V, Surendra M 1995 Comput. Phys. Commun. 8 7Google Scholar

    [21]

    Liebig B, Bradley J W 2013 Plasma Sources SCI. T. 22 045020Google Scholar

    [22]

    Debel F, Cammarate F. 1998 J. Phys D:. Appl. Phys. 31 31Google Scholar

    [23]

    Shidoji E, Masaharn N J. 1994 Jpn. J. Appl. Phys. 33 4281Google Scholar

    [24]

    Qiu Q Q, Li Q F, Su J J 2008 Plasma Sources Sci. Technol. 10 694Google Scholar

    [25]

    Bohlmark J, Gudmundsson J T, Alami J 2005 IEEE Trans. Plasma Sci. 33 346Google Scholar

    [26]

    Qiu Q Q, Li Q F, Su J J 2008 IEEE Trans. Plasma Sci. 36 1899Google Scholar

    [27]

    Wu Z Z, Xiao S, Ma Z Y, Cui S H Ji S P, Tian X B, Fu R K Y, Chu P K 2015 AIP Adv. 5 097178Google Scholar

    [28]

    Anders A 2008 Appl. Phys. Lett. 92 201501Google Scholar

    [29]

    Hecimovic A, Ehiasarian A P 2009 J. Phys D: Appl. 42 135209Google Scholar

    [30]

    Konstantinidis S, Dauchot J P, Ganciu M 2006 Appl. Phys. Lett. 88 021501Google Scholar

    [31]

    Duquenne C, Tessier P Y, Besland M P 2008 J. Appl. Phys. 104 063301Google Scholar

    [32]

    Ogneva É Y, Raikhbaum Y D, Ognev B R 1972 J. Appl Spectrosc. 17 971Google Scholar

  • [1] Zhang Tian-Cheng, Chen Di-Na, Li Chun-Yu, Zhang Li-Min, Xu Zu-Yin, Cheng Ai-Qiang, Bao Hua-Guang, Ding Da-Zhi. Efficient field-circuit co-simulation method for GaN-based high power microwave devices. Acta Physica Sinica, 2023, 72(14): 147101. doi: 10.7498/aps.72.20230452
    [2] Xie Bing-Hong, Xu Guo-Kai, Xiao Shao-Qiu, Yu Zhong-Jun, Zhu Da-Li. Resonance magnetoelectric effect analysis and output power optimization of nonlinear magnetoelectric transducer model. Acta Physica Sinica, 2023, 72(11): 117501. doi: 10.7498/aps.72.20222277
    [3] Chen Chang-Zi, Ma Dong-Lin, Li Yan-Tao, Leng Yong-Xiang. Discharge model and plasma characteristics of high-power pulsed magnetron sputtering titanium target. Acta Physica Sinica, 2021, 70(18): 180701. doi: 10.7498/aps.70.20202050
    [4] Shen Yong-Qing, Zhang Zhi-Qiang, Liao Bin, Wu Xian-Ying, Zhang Xu, Hua Qing-Song, Bao Man-Yu. Tribocorrosion performance of Nitrogen-doped diamond like carbon coating by high power impulse magnetron sputtering technique. Acta Physica Sinica, 2020, 69(10): 108101. doi: 10.7498/aps.69.20200021
    [5] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Chen Lei, Li Ti-Jun, Liu Liang-Liang, Ricky K Y Fu, Tian Xiu-Bo, Paul K Chu, Tan Wen-Chang. Simulation study on plasma discharge and transport in cylindrical cathode controlled by expanding electromagnetic field. Acta Physica Sinica, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [6] Wang Tian-Long, Qiu Qing-Quan, Jing Li-Wei, Zhang Xiao-Bo. Design of circular composite sputtering cathode and simulation of its discharge characteristics. Acta Physica Sinica, 2018, 67(7): 070703. doi: 10.7498/aps.67.20172576
    [7] Cui Sui-Han, Wu Zhong-Zhen, Xiao Shu, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Paul K, Tan Wen-Chang, Pan Feng. Electromagnetic control and optimization of high power impulse magnetron sputtering discharges in cylindrical source. Acta Physica Sinica, 2017, 66(9): 095203. doi: 10.7498/aps.66.095203
    [8] Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu. Cylindric high power impulse magnetron sputtering source and its discharge characteristics. Acta Physica Sinica, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [9] Zheng Shi-Yan. Power output and efficiency of irreversible regenerative Stirling heat engine using generalized Redlich-Kwong gas as the working substance. Acta Physica Sinica, 2014, 63(17): 170508. doi: 10.7498/aps.63.170508
    [10] Wu Zhong-Zhen, Tian Xiu-Bo, Li Chun-Wei, Ricky K. Y., Fu, Pan Feng. Phasic discharge characteristics in high power pulsed magnetron sputtering. Acta Physica Sinica, 2014, 63(17): 175201. doi: 10.7498/aps.63.175201
    [11] Wu Zhong-Zhen, Tian Xiu-Bo, Pan Feng, Ricky K. Y. Fu, Paul K. Chu. Enhanced discharge of high power pulsed magnetron sputtering coupling with high voltage. Acta Physica Sinica, 2014, 63(18): 185207. doi: 10.7498/aps.63.185207
    [12] Xie Chen, Hu Ming-Lie, Xu Zong-Wei, Wu Wei, Gao Hai-Feng, Zhang Da-Peng, Qin Peng, Wang Yi-Sen, Wang Qing-Yue. High power bessel ultrashort pulses directly output from a fiber laser system. Acta Physica Sinica, 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [13] Shen Xiang-Qian, Xie Quan, Xiao Qing-Quan, Chen Qian, Feng Yun. Computer simulation of the glow discharge characteristics in magnetron sputtering. Acta Physica Sinica, 2012, 61(16): 165101. doi: 10.7498/aps.61.165101
    [14] Wang Gan-Ping, Xiang Fei, Tan Jie, Cao Shao-Yun, Luo Min, Kang Qiang, Chang An-Bi. Investigation in discharge progress of a long pulse high power microwave-driven source. Acta Physica Sinica, 2011, 60(7): 072901. doi: 10.7498/aps.60.072901
    [15] Mu Zong-Xin, Mu Xiao-Dong, Wang Chun, Jia Li, Dong Chuang. Analysis on the ionization of high power pulsed unbalanced magnetron sputtering powered by direct current. Acta Physica Sinica, 2011, 60(1): 015204. doi: 10.7498/aps.60.015204
    [16] Ding Wan-Yu, Xu Jun, Li Yan-Qin, Piao Yong, Gao Peng, Deng Xin-Lü, Dong Chuang. Characterization of silicon nitride films prepared by MW-ECR magnetron sputtering. Acta Physica Sinica, 2006, 55(3): 1363-1368. doi: 10.7498/aps.55.1363
    [17] Liu Yan-Ge, Zhang Chun-Shu, Sun Ting-Ting, Lu Yun-Fei, Wang Zhi, Yuan Shu-Zhong, Kai Gui-Yun, Dong Xiao-Yi. Clad-pumped Er3+/Yb3+-codoped short pulse fiber laser with high average power output exceeding 2W. Acta Physica Sinica, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [18] Yang Ming-Liang, Wang Yi-Zhong, Lai Wu-Yan. . Acta Physica Sinica, 1995, 44(9): 1504-1508. doi: 10.7498/aps.44.1504
    [19] CHEN JIAN-WEN, FU SHU-FEN, LIU MIAO-HONG. ELECTRIC DISCHARGE PUMPED XeBr LASER WITH HIGH POWER AND HIGH EFFICIENCY. Acta Physica Sinica, 1980, 29(6): 799-802. doi: 10.7498/aps.29.799
    [20] CHANG ZUNG-KUI, YEH MOW-FOH. PULSED ELECTRODELESS DISCHARGE AS A LIGHT SOURCE FOR LASER EXCITATION AND OBSERVATION OF THE CHARACTERISTICS OF LASER OUTPUT. Acta Physica Sinica, 1966, 22(2): 174-182. doi: 10.7498/aps.22.174
Metrics
  • Abstract views:  5165
  • PDF Downloads:  121
  • Cited By: 0
Publishing process
  • Received Date:  16 September 2020
  • Accepted Date:  13 October 2020
  • Available Online:  06 February 2021
  • Published Online:  20 February 2021

/

返回文章
返回