Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effect of edge on nonlinear optical property of graphene quantum dots

Li Hai-Peng Zhou Jia-Sheng Ji Wei Yang Zi-Qiang Ding Hui-Min Zhang Zi-Tao Shen Xiao-Peng Han Kui

Citation:

Effect of edge on nonlinear optical property of graphene quantum dots

Li Hai-Peng, Zhou Jia-Sheng, Ji Wei, Yang Zi-Qiang, Ding Hui-Min, Zhang Zi-Tao, Shen Xiao-Peng, Han Kui
PDF
HTML
Get Citation
  • Graphene is a two-dimensional material with single-layer honeycomb lattice structure formed by sp2 hybrid connection of carbon atoms. Graphene has excellent optical, electrical, thermal and mechanical properties, and it is considered to be an ideal material for future flexible optoelectronic devices. In recent years, the nonlinear optical properties and regulation of graphene nanostructures have attracted experimental and theoretical interest. Graphene has good delocalization of π-electrons and its unique plane structure, showing good nonlinear optical properties. Graphene quantum dots can be regarded as small graphene nanoflakes. Their unique electronic structure is closely related to the non-bond orbitals on the boundary/edge. Therefore, it is very important to study the boundary/edge effect on the electronic and optical properties of nanographene. In this paper, effects of the number of edge C=C double bonds and Borazine (B3N3) doping on the nonlinear optical properties and UV-Vis absorption spectrum of graphene quantum dots are studied by the quantum chemical calculation methods, respectively. It is found that the symmetry of hexagonal graphene quantum dots decreases and the symmetry of charge distribution is broken when C=C double bond is introduced into the armchair edge, which leads the second-order nonlinear optical activity to be enhanced. During the transition from armchair to zigzag edge, the polarizability and the second hyperpolarizability of hexagonal graphene quantum dots and B3N3-doped graphene quantum dots increase linearly with the number of introduced C=C double bonds incrrasing. In addition, the edge also has an important influence on the absorption spectrum of graphene quantum dots. For graphene quantum dots and B3N3-doped graphene quantum dots, the introduction of C=C double bond at the armchair edge increases the highest occupied molecular orbital energy level and also reduces the lowest unoccupied molecular orbital energy level, which reduces the energy gap between the frontier molecular orbitals, and thus resulting in the red-shift of the maximum absorption wavelength. The doping of B3N3 ring will increase the energy gap between molecular frontier orbitals of graphene quantum dots, leading the UV-Vis absorption spectrum of graphene quantum dots to be blue-shifted. This study provides theoretical guidance for controlling the nonlinear optical response of graphene quantum dots by edge modification.
      Corresponding author: Li Hai-Peng, haipli@cumt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504418) and the Fundamental Research Funds for the Central Universities of China (Grant No. 2019ZDPY16)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li H, Yu X, Shen X, Tang G, Han K 2019 J. Phys. Chem. C 123 20020Google Scholar

    [3]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

    [4]

    白家豪, 郭建刚 2020 物理学报 69 056201Google Scholar

    Bai J H, Guo J G 2020 Acta Phys. Sin. 69 056201Google Scholar

    [5]

    Guo Z, Zhang D, Gong X G 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [6]

    蔡乐, 王华平, 于贵 2016 物理学进展 36 21Google Scholar

    Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21Google Scholar

    [7]

    徐小志, 余佳晨, 张智宏, 刘开辉 2017 科学通报 62 2220Google Scholar

    Xu X Z, Yu J C, Zhang Z H, Liu K H 2017 Chinese Sci. Bull. 62 2220Google Scholar

    [8]

    张华林, 孙琳, 王鼎 2016 物理学报 65 016101Google Scholar

    Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101Google Scholar

    [9]

    Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106Google Scholar

    [10]

    Ouyang F P, Chen L, Jin X, Zhang H 2011 Chin. Phys. Lett. 28 047304Google Scholar

    [11]

    Otero N, El-kelany K E, Pouchan C, Rérata M, Karamanis P 2016 Phys.Chem.Chem.Phys. 18 25315Google Scholar

    [12]

    Zhang M, Li G, Li L 2014 J. Mater. Chem. C 2 1482Google Scholar

    [13]

    Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M J, Schaub R, Bettinger H F 2015 Angew. Chem. Int. Ed. 54 8284Google Scholar

    [14]

    You J W, Bongu S R, Bao Q, Panoiu N C 2018 Nanophotonics 8 63Google Scholar

    [15]

    Bonifazi D, Fasano F, Marinelli D 2015 Chem. Comm. 51 15222Google Scholar

    [16]

    Dosso J, Marinelli D, Demitri N, Bonifazi D 2019 ACS Omega 4 9343Google Scholar

    [17]

    Kan M, Li Y, Sun Q 2016 WIREs Comput. Mol. Sci. 6 65Google Scholar

    [18]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechn. 4 839Google Scholar

    [19]

    Hwang M S, Kim H R, Kim K H, Jeong K Y, Park J S, Choi J H, Kang J H, Lee J M, Park W, Song J H, Seo M K, Par H G 2017 Nano Lett. 17 1892Google Scholar

    [20]

    Sun Z P, Hasan T, Torrisi F 2010 ACS Nano 4 803Google Scholar

    [21]

    Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P, Wu Y X 2017 Carbon 122 756Google Scholar

    [22]

    Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M 2013 Phys. Rev. X 3 021014Google Scholar

    [23]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [24]

    Karamanis P, Otero N, Pouchan C 2014 J. Am. Chem. Soc. 136 7464Google Scholar

    [25]

    Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T, Wu S W 2018 Nat. Photonics 12 430Google Scholar

    [26]

    Liaros N, Bourlinos A B, Zboril R, Couris S 2013 Opt. Exp. 21 21027Google Scholar

    [27]

    Bendikov M, Duong H M, Starkey K, Houk K N, Carter E A, Wudl F 2004 J. Am. Chem. Soc. 126 7416Google Scholar

    [28]

    Hachmann J, Dorando J J, Aviles M, Chan K L 2007 J. Chem. Phys. 127 134309Google Scholar

    [29]

    Zhang B X, Gao H, Li X L 2014 New J. Chem. 38 4615Google Scholar

    [30]

    Zheng X Q, Feng M, Li Z G, Song Y L, Zhang H B 2014 J. Mater. Chem. C 2 4121Google Scholar

    [31]

    Hu Y Y, Li W Q, Li Y, Feng J K, Tian W Q 2016 Can. J. Chem. 94 620Google Scholar

    [32]

    Otero N, Karamanis P, El-Kelany K E, Rérat M, Maschio L, Civalleri B, Kirtman B 2017 J. Phys. Chem. C 121 709Google Scholar

    [33]

    Otero N, Pouchan C, Karamanis P 2017 J. Mater. Chem. C 5 8273Google Scholar

    [34]

    Karamanis P, Otero N, Pouchan C 2015 J. Phys. Chem. C 119 11872Google Scholar

    [35]

    Li H, Zhang Y, Bi Z, Xu R, Li M, Shen X, Tang G, Han K 2017 Mol. Phys. 115 3164Google Scholar

    [36]

    李海鹏, 韩奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白磊 2006 物理学报 55 1827Google Scholar

    Li H P, Han K, Lu Z P, Shen X P, Huang Z M, Zhang W T, Bai L 2006 Acta Phys. Sin. 55 1827Google Scholar

    [37]

    梁飞, 林哲帅, 吴以成 2018 物理学报 67 114203Google Scholar

    Liang F, Lin Z S, Wu Y C 2018 Acta Phys. Sin. 67 114203Google Scholar

    [38]

    马勇, 邹斌, 李宗良, 王传奎, 罗毅 2006 物理学报 55 1974Google Scholar

    Ma Y, Zou B, Li Z L, Wang C K, Luo Y 2006 Acta Phys. Sin. 55 1974Google Scholar

    [39]

    Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2010)

    [40]

    王磊, 胡慧芳, 韦建卫, 曾晖, 于滢潆, 王志勇, 张丽娟 2008 物理学报 57 2987Google Scholar

    Wang L, Hu H F, Wei J W, Zeng H, Yu Y Y, Wang Z Y, Zhang L J 2008 Acta Phys. Sin. 57 2987Google Scholar

    [41]

    Zhang Y P, Ma J M, Yang Y S, Ru J X, Liu X Y, Ma Y, Guo H C 2019 Spectrochim. Acta A 217 60Google Scholar

  • 图 1  石墨烯量子点和B3N3掺杂石墨烯量子点的结构

    Figure 1.  Structures of graphene quantum dots and B3N3-doped graphene quantum dots.

    图 2  GQD-n和B3N3-GQD-n的极化率α

    Figure 2.  The polarizabilities α of GQD-n and B3N3 -GQD-n.

    图 3  GQD-n和B3N3-GQD-n的第二超极化率γ

    Figure 3.  The second hyperpolarizabilities γ of GQD-n and B3N3-GQD-n.

    图 4  GQD-0, GQD-6, B3N3-GQD-0和B3N3-GQD-6的紫外-可见吸收光谱

    Figure 4.  Ultraviolet-visible absorption spectra of GQD-0, GQD-6, B3N3-GQD-0 and B3N3-GQD-6.

    表 1  GQD-n和B3N3-GQD-n的极化率α、第一超极化率β和第二超极化率γ计算值

    Table 1.  Calculated polarizability α, first hyperpolarizability β, second hyperpolarizability γ of GQD-n and B3N3-GQD-n.

    分子α/(10–39 C2·m2·J–1)β/(10–51 C3·m3·J–2)γ/(10–59 C4·m4·J–3)
    GQD-08.85601.807
    GQD-19.4554.1672.069
    GQD-210.0704.6302.312
    GQD-310.6667.0372.521
    GQD-411.2988.5052.875
    GQD-511.9282.3323.185
    GQD-612.54903.380
    B3N3-GQD-08.20601.381
    B3N3-GQD-18.8033.8711.735
    B3N3-GQD-29.4130.3302.011
    B3N3-GQD-310.01910.8752.310
    B3N3-GQD-410.6296.3872.689
    B3N3-GQD-511.2599.2933.157
    B3N3-GQD-611.88303.446
    DownLoad: CSV

    表 2  GQD-n和B3N3-GQD-n的HOMO能级、LUMO能级、HOMO-LUMO能级差(HLG)和最大吸收波长λmax计算值

    Table 2.  Calculated HOMO energy level, LUMO energy level, HOMO-LUMO energy gap (HLG) and maximum absorption wavelength λmax of GQD-n and B3N3-GQD-n.

    分子HOMO/eVLUMO/eVHLG/eVλmax/nm
    GQD-0–6.606–0.9955.611308.6
    GQD-1–6.324–1.2875.037316.7
    GQD-2–6.203–1.4194.784334.1
    GQD-3–6.266–1.3874.878353.3
    GQD-4–6.078–1.5844.493355.1
    GQD-5–6.038–1.6274.411354.8
    GQD-6–6.126–1.5544.572365.3
    B3N3-GQD-0–6.982–0.7786.204254.6
    B3N3-GQD-1–6.594–0.9875.607253.4
    B3N3-GQD-2–6.593–1.2275.366256.9
    B3N3-GQD-3–6.403–1.2075.196252.2
    B3N3-GQD-4–6.443–1.3985.044263.6
    B3N3-GQD-5–6.273–1.3704.903268.4
    B3N3-GQD-6–6.348–1.3075.041320.6
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Li H, Yu X, Shen X, Tang G, Han K 2019 J. Phys. Chem. C 123 20020Google Scholar

    [3]

    吴晨晨, 郭相东, 胡海, 杨晓霞, 戴庆 2019 物理学报 68 148103Google Scholar

    Wu C C, Guo X D, Hu H, Yang X X, Dai Q 2019 Acta Phys. Sin. 68 148103Google Scholar

    [4]

    白家豪, 郭建刚 2020 物理学报 69 056201Google Scholar

    Bai J H, Guo J G 2020 Acta Phys. Sin. 69 056201Google Scholar

    [5]

    Guo Z, Zhang D, Gong X G 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [6]

    蔡乐, 王华平, 于贵 2016 物理学进展 36 21Google Scholar

    Cai L, Wang H P, Yu G 2016 Prog. Phys. 36 21Google Scholar

    [7]

    徐小志, 余佳晨, 张智宏, 刘开辉 2017 科学通报 62 2220Google Scholar

    Xu X Z, Yu J C, Zhang Z H, Liu K H 2017 Chinese Sci. Bull. 62 2220Google Scholar

    [8]

    张华林, 孙琳, 王鼎 2016 物理学报 65 016101Google Scholar

    Zhang H L, Sun L, Wang D 2016 Acta Phys. Sin. 65 016101Google Scholar

    [9]

    Mei F, Zhang D W, Zhu S L 2013 Chin. Phys. B 22 116106Google Scholar

    [10]

    Ouyang F P, Chen L, Jin X, Zhang H 2011 Chin. Phys. Lett. 28 047304Google Scholar

    [11]

    Otero N, El-kelany K E, Pouchan C, Rérata M, Karamanis P 2016 Phys.Chem.Chem.Phys. 18 25315Google Scholar

    [12]

    Zhang M, Li G, Li L 2014 J. Mater. Chem. C 2 1482Google Scholar

    [13]

    Krieg M, Reicherter F, Haiss P, Ströbele M, Eichele K, Treanor M J, Schaub R, Bettinger H F 2015 Angew. Chem. Int. Ed. 54 8284Google Scholar

    [14]

    You J W, Bongu S R, Bao Q, Panoiu N C 2018 Nanophotonics 8 63Google Scholar

    [15]

    Bonifazi D, Fasano F, Marinelli D 2015 Chem. Comm. 51 15222Google Scholar

    [16]

    Dosso J, Marinelli D, Demitri N, Bonifazi D 2019 ACS Omega 4 9343Google Scholar

    [17]

    Kan M, Li Y, Sun Q 2016 WIREs Comput. Mol. Sci. 6 65Google Scholar

    [18]

    Xia F, Mueller T, Lin Y M, Valdes-Garcia A, Avouris P 2009 Nat. Nanotechn. 4 839Google Scholar

    [19]

    Hwang M S, Kim H R, Kim K H, Jeong K Y, Park J S, Choi J H, Kang J H, Lee J M, Park W, Song J H, Seo M K, Par H G 2017 Nano Lett. 17 1892Google Scholar

    [20]

    Sun Z P, Hasan T, Torrisi F 2010 ACS Nano 4 803Google Scholar

    [21]

    Li H P, Bi Z T, Xu R F, Han K, Li M X, Shen X P, Wu Y X 2017 Carbon 122 756Google Scholar

    [22]

    Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M 2013 Phys. Rev. X 3 021014Google Scholar

    [23]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [24]

    Karamanis P, Otero N, Pouchan C 2014 J. Am. Chem. Soc. 136 7464Google Scholar

    [25]

    Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T, Wu S W 2018 Nat. Photonics 12 430Google Scholar

    [26]

    Liaros N, Bourlinos A B, Zboril R, Couris S 2013 Opt. Exp. 21 21027Google Scholar

    [27]

    Bendikov M, Duong H M, Starkey K, Houk K N, Carter E A, Wudl F 2004 J. Am. Chem. Soc. 126 7416Google Scholar

    [28]

    Hachmann J, Dorando J J, Aviles M, Chan K L 2007 J. Chem. Phys. 127 134309Google Scholar

    [29]

    Zhang B X, Gao H, Li X L 2014 New J. Chem. 38 4615Google Scholar

    [30]

    Zheng X Q, Feng M, Li Z G, Song Y L, Zhang H B 2014 J. Mater. Chem. C 2 4121Google Scholar

    [31]

    Hu Y Y, Li W Q, Li Y, Feng J K, Tian W Q 2016 Can. J. Chem. 94 620Google Scholar

    [32]

    Otero N, Karamanis P, El-Kelany K E, Rérat M, Maschio L, Civalleri B, Kirtman B 2017 J. Phys. Chem. C 121 709Google Scholar

    [33]

    Otero N, Pouchan C, Karamanis P 2017 J. Mater. Chem. C 5 8273Google Scholar

    [34]

    Karamanis P, Otero N, Pouchan C 2015 J. Phys. Chem. C 119 11872Google Scholar

    [35]

    Li H, Zhang Y, Bi Z, Xu R, Li M, Shen X, Tang G, Han K 2017 Mol. Phys. 115 3164Google Scholar

    [36]

    李海鹏, 韩奎, 逯振平, 沈晓鹏, 黄志敏, 张文涛, 白磊 2006 物理学报 55 1827Google Scholar

    Li H P, Han K, Lu Z P, Shen X P, Huang Z M, Zhang W T, Bai L 2006 Acta Phys. Sin. 55 1827Google Scholar

    [37]

    梁飞, 林哲帅, 吴以成 2018 物理学报 67 114203Google Scholar

    Liang F, Lin Z S, Wu Y C 2018 Acta Phys. Sin. 67 114203Google Scholar

    [38]

    马勇, 邹斌, 李宗良, 王传奎, 罗毅 2006 物理学报 55 1974Google Scholar

    Ma Y, Zou B, Li Z L, Wang C K, Luo Y 2006 Acta Phys. Sin. 55 1974Google Scholar

    [39]

    Frisch M J, Trucks G W, Schlegel H B, et al. GAUSSIAN 09, Revision C.01 (Gaussian, Inc., Wallingford, CT, 2010)

    [40]

    王磊, 胡慧芳, 韦建卫, 曾晖, 于滢潆, 王志勇, 张丽娟 2008 物理学报 57 2987Google Scholar

    Wang L, Hu H F, Wei J W, Zeng H, Yu Y Y, Wang Z Y, Zhang L J 2008 Acta Phys. Sin. 57 2987Google Scholar

    [41]

    Zhang Y P, Ma J M, Yang Y S, Ru J X, Liu X Y, Ma Y, Guo H C 2019 Spectrochim. Acta A 217 60Google Scholar

  • [1] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [2] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [3] Jiang Xiao-Wei, Wu Hua, Yuan Shou-Cai. Enhancement of graphene three-channel optical absorption based on metal grating. Acta Physica Sinica, 2019, 68(13): 138101. doi: 10.7498/aps.68.20182173
    [4] Wang Xiao, Huang Sheng-Xiang, Luo Heng, Deng Lian-Wen, Wu Hao, Xu Yun-Chao, He Jun, He Long-Hui. First-principles study of electronic structure and optical properties of nickel-doped multilayer graphene. Acta Physica Sinica, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [5] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [6] Gao Jian, Sang Tian, Li Jun-Lang, Wang La. Double-channel absorption enhancement of graphene using narrow groove metal grating. Acta Physica Sinica, 2018, 67(18): 184210. doi: 10.7498/aps.67.20180848
    [7] Chen Hao, Zhang Xiao-Xia, Wang Hong, Ji Yue-Hua. Near-infrared absorption of graphene-metal nanostructure based on magnetic polaritons. Acta Physica Sinica, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [8] Qu Ling-Feng, Hou Qing-Yu, Zhao Chun-Wang. Optical bandgap and absorption spectra of Y doped ZnO studied by first-principle calculations. Acta Physica Sinica, 2016, 65(3): 037103. doi: 10.7498/aps.65.037103
    [9] Xu Jie, Zhou Li, Huang Zhi-Xiang, Wu Xian-Liang. Study on the absorbing properties of critically coupled resonator with graphene. Acta Physica Sinica, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [10] Jin Qin, Dong Hai-Ming, Han Kui, Wang Xue-Feng. Ultrafast dynamic optical properties of graphene. Acta Physica Sinica, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [11] Hou Qing-Yu, Li Wen-Cai, Zhao Chun-Wang. Effect of In–2N heavy co-doping and preferred orientation on the optical band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [12] Yuan Du-Qi. Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap. Acta Physica Sinica, 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [13] Xie Ling-Yun, Xiao Wen-Bo, Huang Guo-Qing, Hu Ai-Rong, Liu Jiang-Tao. Terahertz absorption of graphene enhanced by one-dimensional photonic crystal. Acta Physica Sinica, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [14] Guo Shao-Qiang, Hou Qing-Yu, Zhao Chun-Wang, Mao Fei. First principles study of the effect of high V doping on the optical band gap and absorption spectrum of ZnO. Acta Physica Sinica, 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [15] Hou Qing-Yu, Dong Hong-Ying, Ma Wen, Zhao Chun-Wang. First-principle study on the effect of high Ga doping on the optical band gap and the band-edge of optical absorption of ZnO. Acta Physica Sinica, 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [16] Dong Hai-Ming. Electrically-controlled nonlinear terahertz optical properties of graphene. Acta Physica Sinica, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [17] Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong. Optical absorptions in monolayer and bilayer graphene. Acta Physica Sinica, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [18] Lu Jing-Jing, Feng Miao, Zhan Hong-Bing. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect. Acta Physica Sinica, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [19] Wang Ce, Chen Xiao-Bo, Zhang Chun-Lin, Zhang Yun-Zhi, Chen Luan, Ma Hui, Li Song, Gao Ai-Hua. Optical parameters and energy level splitting of Er3+ in Er3+: GdVO4. Acta Physica Sinica, 2007, 56(10): 6090-6097. doi: 10.7498/aps.56.6090
    [20] Zhou Wen-Yuan, Tian Jian-Guo, Zang Wei-Ping, Zhang Chun-Ping, Zhang Guang-Yin, Wang Zhao-Qi. . Acta Physica Sinica, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
Metrics
  • Abstract views:  5264
  • PDF Downloads:  113
  • Cited By: 0
Publishing process
  • Received Date:  06 October 2020
  • Accepted Date:  26 October 2020
  • Available Online:  20 November 2020
  • Published Online:  05 March 2021

/

返回文章
返回