Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Temporal filtering characteristics of gated InGaAs/InP single-photon detectors for coincidence measurement

Jin Ya-Qing Dong Rui-Fang Quan Run-Ai Xiang Xiao Liu Tao Zhang Shou-Gang

Citation:

Temporal filtering characteristics of gated InGaAs/InP single-photon detectors for coincidence measurement

Jin Ya-Qing, Dong Rui-Fang, Quan Run-Ai, Xiang Xiao, Liu Tao, Zhang Shou-Gang
PDF
HTML
Get Citation
  • Semiconductor single-photon avalanche detectors (SPADs) have played an important role in practical quantum communication technology due to their advantages of small size, low cost and easy operation. Among them, InGaAs/InP SPADs have been widely used in fiber-optic quantum key distribution systems due to their response wavelength range in a near-infrared optical communication band. In order to avoid the influence of dark count and afterpulsing on single photon detection, the gated quenching technologies are widely applied to the InGaAs/InP SPADs. Typically, the duration of gate pulse is set to be as short as a few nanoseconds or even less. As the detection of the arrival of single photons depends on the coincidence between the arrival time of gate pulse and the arrival time of photon, the gate pulse duration of the InGaAs/InP SPADs inevitably affects the effective detection of the single photons. Without the influence of dispersion, the temporal width of the transmitted photons is usually on the order of picoseconds or even less, which is much shorter than the gate width of the InGaAs/InP SPAD. Therefore, the gate width normally has no influence on the temporal measurement of the detected photons. However, in quantum systems involving large dispersion, such as the long-distance fiber-optic quantum communication system, the temporal width of the transmitted photons is significantly broadened by the experienced dispersion so that it may approach to or even exceed the gate width of the single-photon detector. As a result, the effect of the gate width on the recording of the arrival time of the dispersed photons should be taken into account. In this paper, the influence of the gate width coupled to the InGaAs/InP single photon detectors on the measurement of the two-photon coincidence time width is studied both theoretically and experimentally. The theoretical analysis and experimental results are in good agreement with each other, showing that the finally measured coincidence time width of the two-photon state after dispersion is not more than half of the effective gate pulses width. The maximum observable coincidence time width based on the gated single photon detector is fundamentally limited by the gate width, which restricts its applications in quantum information processing based on the two-photon temporal correlation measurement.
      Corresponding author: Dong Rui-Fang, dongruifang@ntsc.ac.cn ; Zhang Shou-Gang, szhang@ntsc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12033007, 61875205, 61801458, 91836301), the Frontier Science Key Research Project of Chinese Academy of Sciences (Grant No. QYZDB-SW-SLH007), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDC07020200), the “Western Young Scholar” Project of Chinese Academy of Sciences (Grant Nos. XAB2019B17, XAB2019B15), the Key R&D Program of Guangdong province, China (Grant No. 2018B030325001), the Chinese Academy of Sciences Key Project, China (Grant No. ZDRW-KT-2019-1-0103)
    [1]

    Li L, Davis L M 1993 Rev. Sci. Instrum. 64 1524Google Scholar

    [2]

    Levine B F, Bethea C G, Campbell J C 1985 Appl. Phys. Lett. 46 333Google Scholar

    [3]

    Levine B F, Bethea C G, Campbell J C 1985 Electron. Lett. 21 194Google Scholar

    [4]

    Sun X, Krainak M A, Abshire J B, Spinhirne J D, Trottier C, Davies M, Dautet H, Allan G R, Lukemire A T, Vandiver J C 2004 J. Mod. Opt. 51 1333Google Scholar

    [5]

    Hu J, Li L, Yang W, Manna L, Wang L, Alivisatos A P 2001 Science 292 2060Google Scholar

    [6]

    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H 2011 Opt. Express 19 13497Google Scholar

    [7]

    Keller O 2012 Sci. China, Ser. G 55 1389Google Scholar

    [8]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [9]

    Scarani V, Bechmannpasquinucci H, Cerf N J, Dusek M, Lutkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [10]

    Donaldson W R, Marciante J R, Roides R G 2009 IEEE J. Quantum Electron. 46 191

    [11]

    Xiang X, Dong R, Quan R, Jin Y, Yang Y, Li M, Liu T, Zhang S 2020 Opt. Lett. 45 2993Google Scholar

    [12]

    Rarity J, Tapster P R 1990 Phys. Rev. Lett. 64 2495Google Scholar

    [13]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2655Google Scholar

    [14]

    Quan R, Zhai Y, Wang M, Hou F, Wang S, Xiang X, Liu T, Zhang S, Dong R 2016 Sci. Rep. 6 30453Google Scholar

    [15]

    Quan R, Dong R, Zhai Y, Hou F, Xiang X, Zhou H, Lv C, Wang Z, You L, Liu T 2019 Opt. Lett. 44 614Google Scholar

    [16]

    Hou F, Quan R, Dong R, Xiang X, Li B, Liu T, Yang X, Li H, You L, Wang Z 2019 Phys. Rev. A 100

    [17]

    Hadfield R H 2009 Nat. Photonics 3 696Google Scholar

    [18]

    Zhang J, Itzler M A, Zbinden H, Pan J 2015 Light Sci. Appl. 4 e286Google Scholar

    [19]

    Cova S, Ghioni M, Lacaita A L, Samori C, Zappa F 1996 Appl. Opt. 35 1956Google Scholar

    [20]

    Ribordy G, Gautier J, Zbinden H, Gisin N 1998 Appl. Opt. 37 2272Google Scholar

    [21]

    Namekata N, Sasamori S, Inoue S 2006 Opt. Express 14 10043Google Scholar

    [22]

    Liang X, Liu J, Wang Q, Du D, Ma J, Jin G, Chen Z, Zhang J, Pan J 2012 Rev. Sci. Instrum. 83 083111Google Scholar

    [23]

    Walenta N, Lunghi T, Guinnard O, Houlmann R, Zbinden H, Gisin N 2012 J. Appl. Phys. 112 063106Google Scholar

    [24]

    Yuan Z L, Kardynal B, Sharpe A W, Shields A J 2007 Appl. Phys. Lett. 91 041114Google Scholar

    [25]

    Chen X, Wu E, Wu G, Zeng H 2010 Opt. Express 18 7010Google Scholar

    [26]

    Zhang Y, Zhang X, Wang S 2013 Opt. Lett. 38 606Google Scholar

    [27]

    Liu X, Yao X, Wang H, Li H, Wang Z, You L, Huang Y, Zhang W 2019 Appl. Phys. Lett. 114 141104Google Scholar

    [28]

    Alikhan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503Google Scholar

    [29]

    Shih Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1016Google Scholar

    [30]

    Dong S, Zhang W, Huang Y, Peng J 2016 Sci. Rep. 6 26022Google Scholar

    [31]

    Franson J D 1992 Phys. Rev. A 45 3126Google Scholar

    [32]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N 2002 Phys. Rev. Lett. 88 183602Google Scholar

    [33]

    Valencia A, Chekhova M V, Trifonov A, Shih Y 2002 Phys. Rev. Lett. 88 183601Google Scholar

    [34]

    Hou F, Xiang X, Quan R, Wang M, Zhai Y, Wang S, Liu T, Zhang S, Dong R 2016 Appl. Phys. B 122 128

    [35]

    Yang Y, Xiang X, Hou F, Quan R, Li B, Li W, Zhu N, Liu T, Zhang S, Dong R 2020 Opt. Express 28 7488Google Scholar

    [36]

    Ware M, Migdall A L, Bienfang J C, Polyakov S V 2007 J. Mod. Opt. 54 361Google Scholar

    [37]

    ID Quantique, Photon Counting for Brainies, id https://www. optoscience.com/maker/id/pdf/IDQ_Photon_counting_for_Brainies.pdf [2020-10-06]

  • 图 1  基于门控下单光子探测器对于纠缠双光子时间关联分布测量时域滤波示意图

    Figure 1.  Schematic diagram of time-domain filtering for entangled two-photon correlation measurement with gated mode single-photon detector.

    图 2  不同光子带宽的纠缠光源在不同门控信号下, 双光子符合FWHM随SMF长度变化的理论曲线 (a) $\Delta \lambda = 7.17\;{\rm{nm}}$; (b) $\Delta \lambda = 2.46\;{\rm{nm}}$

    Figure 2.  The theoretical temporal FWHM result versus the different SMF length under different gate signal for the entangled light with different bandwidth: (a) $\Delta \lambda = 7.17\;{\rm{nm}}$; (b) $\Delta \lambda = 2.46\;{\rm{nm}}$.

    图 3  通信波段频率反关联纠缠光源的产生及其双光子符合测量实验装置图 (a1), (a2)基于I类和II类SPDC的频率纠缠源产生过程; (b)信号光子和闲置光子分别经过光纤SMF1和SMF2的传输过程; (c1), (c2)基于超导纳米线单光子探测器(SNSPD)和InGaAs/InP单光子探测器(SPD4)的测量系统

    Figure 3.  Experimental setup diagram of the generation of frequency anti-correlated entangled light sources in the telecommunication band and their two-photon joint distribution measurement after dispersive propagation: (a1), (a2) The generation process of entangled sources from type-I and type-II SPDC pumped by 780 nm quasi-monochromatic laser; (b) photon transmission through sperate single-mode fiber SMF1 and SMF2; (c1), (c2) coincidence measurement system based on the Superconducting nanowire single-photon detectors (SNSPD) and InGaAs/InP single-photon detectors (SPD4).

    图 4  基于II类SPDC过程的纠缠光子对, 每臂经过不同长度SMF色散展宽之后, 进行符合测量的结果 (a) 1 km; (b) 3 km; (c) 5 km; (d) 10 km

    Figure 4.  The coincidence measurement results of the entangled photon pair from type-II SPDC process when the photon is dispersed by SMF with different lengths: (a) 1 km; (b) 3 km; (c) 5 km; (d) 10 km.

    图 5  使用不同类型反关联频率纠缠光源下, 符合测量FWHM随SMF长度变化的测量和理论结果 (a) I类SPDC; (b) II类SPDC

    Figure 5.  The measurement and theoretical FWHM results of the temporal coincidence measurement for different types of anti-correlated frequency entangled light with different SMF length: (a) Type I SPDC; (b) Type II SPDC.

    图 6  基于I类SPDC的纠缠光子对符合测量时间FWHM随SMF的长度变化的结果

    Figure 6.  The measurement FWHM results of the temporal coincidence measurement for type-I SPDC process when the photon is dispersed with different SMF length.

    图 7  基于I类SPDC过程的纠缠光子对每臂经过不同长度SMF色散展宽之后, 采用ID210与SPD4进行符合测量的结果 (a) 约1 km; (b) 约3 km

    Figure 7.  After each photon is dispersed by the SMF with different lengths, the coincidence measurement of the photon pairs from the type-I SPDC process is made by using ID210 and SPD4: (a) About 1 km; (b) about 3 km.

  • [1]

    Li L, Davis L M 1993 Rev. Sci. Instrum. 64 1524Google Scholar

    [2]

    Levine B F, Bethea C G, Campbell J C 1985 Appl. Phys. Lett. 46 333Google Scholar

    [3]

    Levine B F, Bethea C G, Campbell J C 1985 Electron. Lett. 21 194Google Scholar

    [4]

    Sun X, Krainak M A, Abshire J B, Spinhirne J D, Trottier C, Davies M, Dautet H, Allan G R, Lukemire A T, Vandiver J C 2004 J. Mod. Opt. 51 1333Google Scholar

    [5]

    Hu J, Li L, Yang W, Manna L, Wang L, Alivisatos A P 2001 Science 292 2060Google Scholar

    [6]

    Ren M, Gu X, Liang Y, Kong W, Wu E, Wu G, Zeng H 2011 Opt. Express 19 13497Google Scholar

    [7]

    Keller O 2012 Sci. China, Ser. G 55 1389Google Scholar

    [8]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [9]

    Scarani V, Bechmannpasquinucci H, Cerf N J, Dusek M, Lutkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301Google Scholar

    [10]

    Donaldson W R, Marciante J R, Roides R G 2009 IEEE J. Quantum Electron. 46 191

    [11]

    Xiang X, Dong R, Quan R, Jin Y, Yang Y, Li M, Liu T, Zhang S 2020 Opt. Lett. 45 2993Google Scholar

    [12]

    Rarity J, Tapster P R 1990 Phys. Rev. Lett. 64 2495Google Scholar

    [13]

    Valencia A, Scarcelli G, Shih Y 2004 Appl. Phys. Lett. 85 2655Google Scholar

    [14]

    Quan R, Zhai Y, Wang M, Hou F, Wang S, Xiang X, Liu T, Zhang S, Dong R 2016 Sci. Rep. 6 30453Google Scholar

    [15]

    Quan R, Dong R, Zhai Y, Hou F, Xiang X, Zhou H, Lv C, Wang Z, You L, Liu T 2019 Opt. Lett. 44 614Google Scholar

    [16]

    Hou F, Quan R, Dong R, Xiang X, Li B, Liu T, Yang X, Li H, You L, Wang Z 2019 Phys. Rev. A 100

    [17]

    Hadfield R H 2009 Nat. Photonics 3 696Google Scholar

    [18]

    Zhang J, Itzler M A, Zbinden H, Pan J 2015 Light Sci. Appl. 4 e286Google Scholar

    [19]

    Cova S, Ghioni M, Lacaita A L, Samori C, Zappa F 1996 Appl. Opt. 35 1956Google Scholar

    [20]

    Ribordy G, Gautier J, Zbinden H, Gisin N 1998 Appl. Opt. 37 2272Google Scholar

    [21]

    Namekata N, Sasamori S, Inoue S 2006 Opt. Express 14 10043Google Scholar

    [22]

    Liang X, Liu J, Wang Q, Du D, Ma J, Jin G, Chen Z, Zhang J, Pan J 2012 Rev. Sci. Instrum. 83 083111Google Scholar

    [23]

    Walenta N, Lunghi T, Guinnard O, Houlmann R, Zbinden H, Gisin N 2012 J. Appl. Phys. 112 063106Google Scholar

    [24]

    Yuan Z L, Kardynal B, Sharpe A W, Shields A J 2007 Appl. Phys. Lett. 91 041114Google Scholar

    [25]

    Chen X, Wu E, Wu G, Zeng H 2010 Opt. Express 18 7010Google Scholar

    [26]

    Zhang Y, Zhang X, Wang S 2013 Opt. Lett. 38 606Google Scholar

    [27]

    Liu X, Yao X, Wang H, Li H, Wang Z, You L, Huang Y, Zhang W 2019 Appl. Phys. Lett. 114 141104Google Scholar

    [28]

    Alikhan I, Broadbent C J, Howell J C 2007 Phys. Rev. Lett. 98 060503Google Scholar

    [29]

    Shih Y 2007 IEEE J. Sel. Top. Quantum Electron. 13 1016Google Scholar

    [30]

    Dong S, Zhang W, Huang Y, Peng J 2016 Sci. Rep. 6 26022Google Scholar

    [31]

    Franson J D 1992 Phys. Rev. A 45 3126Google Scholar

    [32]

    Giovannetti V, Maccone L, Shapiro J H, Wong F N 2002 Phys. Rev. Lett. 88 183602Google Scholar

    [33]

    Valencia A, Chekhova M V, Trifonov A, Shih Y 2002 Phys. Rev. Lett. 88 183601Google Scholar

    [34]

    Hou F, Xiang X, Quan R, Wang M, Zhai Y, Wang S, Liu T, Zhang S, Dong R 2016 Appl. Phys. B 122 128

    [35]

    Yang Y, Xiang X, Hou F, Quan R, Li B, Li W, Zhu N, Liu T, Zhang S, Dong R 2020 Opt. Express 28 7488Google Scholar

    [36]

    Ware M, Migdall A L, Bienfang J C, Polyakov S V 2007 J. Mod. Opt. 54 361Google Scholar

    [37]

    ID Quantique, Photon Counting for Brainies, id https://www. optoscience.com/maker/id/pdf/IDQ_Photon_counting_for_Brainies.pdf [2020-10-06]

Metrics
  • Abstract views:  4448
  • PDF Downloads:  86
  • Cited By: 0
Publishing process
  • Received Date:  06 October 2020
  • Accepted Date:  30 October 2020
  • Available Online:  25 March 2021
  • Published Online:  05 April 2021

/

返回文章
返回