Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Tunable electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures by strain

Xing Hai-Ying Zheng Zhi-Jian Zhang Zi-Han Wu Wen-Jing Guo Zhi-Ying

Citation:

Tunable electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures by strain

Xing Hai-Ying, Zheng Zhi-Jian, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying
PDF
HTML
Get Citation
  • First principles calculations are performed to explore the electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures after biaxial strain has been applied. The type-II band alignments with indirect band gap are obtained in the most stable BlueP/X Te2 heterostructures, in which the photon-generated carriers can be effectively separated spatially. The BlueP/MoTe2 and BlueP/WTe2 heterostructures both have appreciable absorption of infrared light, while the shielding property is enhanced. The increase of biaxial compressive strain induces indirect-direct band gap transition and semiconductor-metal transition when a certain compressive strain is imposed on the heterostructures, moreover, the band gap of the heterostructures shows approximately linear decrease with the compressive strain increasing, and they undergo a transition from indirect band gap type-II to indirect band gap type-I with the increase of biaxial tensile strain. These characteristics provide an attractive possibility of obtaining novel multifunctional devices. We also find that the optical properties of BlueP/X Te2 heterostructures can be effectively modulated by biaxial strain. With the increase of compression strain, the absorption edge is red-shifted, the response of light absorption extends to the mid-infrared light and the absorption coefficient increases to 10–5 cm–1 for the two heterostructures. The BlueP/MoTe2 shows stronger light absorption response than the BlueP/WTe2 in the mid-infrared to infrared region and the ε1(0) increases significantly. The BlueP/X Te2 heterostructures exhibit modulation of their band alignment and optical properties by applied biaxial strain. The calculation results not only pave the way for experimental research but also indicate the great potential applications of BlueP/XTe2 van der Waals heterostructures in narrow band gap mid-infrared semiconductor materials and photoelectric devices.
      Corresponding author: Xing Hai-Ying, hyxingmail@126.com ; Guo Zhi-Ying, zyguo@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475212, 11505211, 61204008)
    [1]

    Gupta A, Sakthivel T, Seal S 2015 Prog. Mater. Sci. 73 44Google Scholar

    [2]

    Shi J, Tong R, Zhou X, Gong Y, Zhang Z, Ji Q, Zhang Y, Fang Q, Gu L, Wang X 2016 Adv. Mater. 28 10664Google Scholar

    [3]

    Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958Google Scholar

    [4]

    Chen S Y, Goldstein T, Venkataraman D, Ramasubramaniam A, Yan J 2016 Nano. Lett. 16 5852Google Scholar

    [5]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111

    [6]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D, Liu K, Ji J, Li J 2014 Nano. Lett. 14 3185Google Scholar

    [7]

    Yu Y F, Hu S, Su L Q, Huang L J, Liu Y, Jin Z H, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L Y 2015 Nano Lett. 15 486Google Scholar

    [8]

    Nguyen C V 2018 Superlattices Microst. 116 79Google Scholar

    [9]

    Yu L, Lee Y H, Ling X, Santos E J G, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H 2014 Nano. Lett. 14 3055Google Scholar

    [10]

    Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S, Machida T 2015 Appl. Phys. Lett. 107 023109

    [11]

    Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587

    [12]

    Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396Google Scholar

    [13]

    Zandt T, Dwelk H, Janowitz C, Manzke R 2007 J. Alloys Compd. 442 216Google Scholar

    [14]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [15]

    Seok J, Lee J H, Cho S, Ji B, Kim H W, Kwon M, Kim D, Kim Y M, Oh S H, Kim S W 2017 2D Mater. 4 025061

    [16]

    Qiao H, Huang Z Y, Liu S Y, Liu Y D, Li J 2018 Ceram. Int. 44 21205Google Scholar

    [17]

    Muechler L, Alexandradinata A, Neupert T, Car R 2016 Phys. Rev. X 6 041069

    [18]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [19]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [20]

    Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C, Yuan K 2016 Nano Lett. 16 4903Google Scholar

    [21]

    Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [22]

    Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y 2015 Sci. Rep. 5 09961Google Scholar

    [23]

    Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P 2016 ACS Nano. 10 3852Google Scholar

    [24]

    Wu E, Xie Y, Liu Q, Hu X, Liu J, Zhang D, Zhou C 2019 ACS Nano. 13 5430Google Scholar

    [25]

    Le H, Li J 2016 Appl. Phys. Lett. 108 083101Google Scholar

    [26]

    Li H, Li D, Luo H 2020 Phys. Status Solidi 257 2000006Google Scholar

    [27]

    Li H, Cui Y, Li W, Ye L, Mu L 2020 Appl. Phys. A 126 92Google Scholar

    [28]

    You B, Wang X, Zheng Z, Mi W 2016 Phys. Chem. Chem. Phys. 18 7381Google Scholar

    [29]

    Sun M, Chou J P, Yu J, Tang W 2017 Phys. Chem. Chem. Phys. 19 17324Google Scholar

    [30]

    Zhu J, Zhang J, Hao Y 2016 Jpn. J Appl. Phys. 55 080306Google Scholar

    [31]

    Bernardi M, Palummo M, Grossman J C 2013 Nano. Lett. 13 3664Google Scholar

    [32]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [33]

    Mak K F, Shan J 2016 Nature Photon. 10 216Google Scholar

    [34]

    Liu G, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 46 2643Google Scholar

    [35]

    Duan X, Wang C, Pan A, Yu R, Duan X 2016 CHemInform 47 8859Google Scholar

    [36]

    Kumar A, Ahluwalia P K 2012 Eur. Phys. J. B 85 186Google Scholar

    [37]

    Terrones H, López-Urías F, Terrones M 2013 Sci. Rep. 3 1549Google Scholar

    [38]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [39]

    马浩浩, 张显斌, 魏旭艳, 曹佳萌 2020 物理学报 69 117101Google Scholar

    Ma H H, Zhang X B, Wei X Y, Cao J M 2020 Acta Phys. Sin. v. 69 117101Google Scholar

    [40]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater 2 17033

    [41]

    Liu B, Liao Q, Zhang X, Du J, Zhang Y 2019 ACS Nano. 13 9057Google Scholar

    [42]

    Kresse G, Furthmüller J 1996 Comp. mat. er 6 15Google Scholar

    [43]

    Perdew J P, Burke K, Ernzerhof M, Erratum 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [44]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [45]

    Klime Jí, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201Google Scholar

    [46]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [47]

    Yang J, Lü T, Myint Y W, Pei J, Lu Y 2015 ACS Nano 9 6603Google Scholar

    [48]

    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar

    [49]

    Pham K D, Phuc H V, Hieu N N, Hoi B D, Nguyen C V 2018 AIP Adv. 29 075207Google Scholar

    [50]

    Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C 2019 Appl. Surf. Sci. 497 143809Google Scholar

    [51]

    Zhang W, Zhang L 2017 Rsc Advances 7 34584Google Scholar

    [52]

    Sun M, Chou J P, Yu J, Tang W 2018 Phys. Chem. Chem. Phys. 20 24726Google Scholar

    [53]

    Zhang W X, He W H, Zhao J W, He C 2018 J. Solid. State. Chem. 265 257Google Scholar

    [54]

    Zhang Z H, Xie Z F, Liu J 2020 Phys. Chem. Chem. Phys. 22 5873Google Scholar

    [55]

    何文浩 2019 硕士学位论文 (西安: 长安大学)

    He W H 2019 M. S. Dissertation (Xi’an: Chang’an University) (in Chinese)

    [56]

    沈学础 2002 半导体光谱和光学性质 (北京科学出版社) 第76页

    Shen X C 2002 Spectra and Optical Properties of Semiconductors (Beijing Science Press) p76 (in Chinese)

    [57]

    Penn D R 1962 Phys. Rev. 128 2093Google Scholar

  • 图 1  单层BlueP与X Te2的能带结构图和态密度图 (a) BlueP; (b) MoTe2; (c) WTe2

    Figure 1.  Energy band structures and density of states of BlueP and X Te2 monolayer: (a) BlueP; (b) MoTe2; (c) WTe2.

    图 2  BlueP/X Te2异质结模型的侧视图和俯视图 (a), (b), (c) BlueP/MoTe2; (d), (e), (f) BlueP/WTe2

    Figure 2.  Side and top view of BlueP/X Te2 van der Waals heterostructures: (a), (b), (c) BlueP/MoTe2; (d), (e), (f) BlueP/WTe2

    图 3  BlueP/X Te2异质结结合能Eb随层间距d0的变化 (a) BlueP/MoTe2; (b) BlueP/WTe2

    Figure 3.  Binding energy of the BlueP/X Te2 van der Waals heterostructures as a function of the distance d0 between the BlueP and X Te2 monolayers: (a) BlueP/MoTe2; (b) BlueP/WTe2.

    图 4  BlueP/X Te2异质结能带结构、分态密度、能带排列及异质结中CBM和VBM分解电荷密度图 (a)−(d) BlueP/MoTe2; (e)−(h) BlueP/WTe2

    Figure 4.  Energy band structures, partial density of states (PDOS), band alignment and the band decomposed charge density of CBM and VBM in heterostructures: (a)−(d) BlueP/MoTe2; (e)−(h) BlueP/WTe2.

    图 5  BlueP/X Te2异质结体系总能与双轴应变关系图

    Figure 5.  Total energy of the BlueP/X Te2 van der Waals heterostructures as a function of the biaxial strain ε

    图 6  施加不同应力下(a) BlueP/MoTe2和(b) BlueP/WTe2异质结能带图, 其中ε > 0 (ε < 0)表示体系施加拉伸(压缩)应力

    Figure 6.  Energy band structures under different biaxial strains for (a) BlueP/MoTe2 and (b) BlueP/WTe2, where $ \varepsilon >0\;(\varepsilon <0) $ represents the tensile strain (compressive strain).

    图 7  施加不同应力下(a) BlueP/MoTe2和(b) BlueP/WTe2异质结分态密度图; (c) BlueP/X Te2带隙与应力变化关系图; ε > 0 (ε < 0)表示体系施加拉伸(压缩)应力

    Figure 7.  Partial density of states under different biaxial strains for (a) BlueP/MoTe2 and (b) BlueP/WTe2; (c) the band gap as a function of biaxial strains in BlueP/X Te2 van der Waals heterostructures; ε > 0 (ε < 0) represents the tensile strain (compressive strain).

    图 8  单层BlueP与X Te2及施加不同应力下BlueP/X Te2异质结介电函数实部ε1(ω)谱图 (a)单层BlueP与X Te2; (b) BlueP/X Te2异质结; (c), (e) BlueP/MoTe2, BlueP/WTe2, ε < 0; (d), (f) BlueP/MoTe2, BlueP/WTe2, ε > 0; ε > 0 (ε < 0)表示体系施加拉伸(压缩)应力

    Figure 8.  Real part of the dielectric function of BlueP and X Te2 monolayer, and BlueP/X Te2 heterostructures under different biaxial strains: (a) BlueP and X Te2 monolayer; (b) BlueP/X Te2; (c), (e) BlueP/MoTe2, BlueP/WTe2, ε < 0; (d), (f) BlueP/MoTe2, BlueP/WTe2, ε > 0; ε > 0 (ε < 0) represents the tensile strain (compressive strain).

    图 9  单层BlueP与X Te2及施加不同应力下BlueP/X Te2异质结光吸收谱 (a)单层BlueP, MoTe2与BlueP/MoTe2; (b)单层BlueP, WTe2与BlueP/WTe2; (c), (d) BlueP/MoTe2, BlueP/WTe2, 施加应力区间为–4%–+4%

    Figure 9.  Absorption coefficient of BlueP and X Te2 monolayer, and BlueP/XTe2 heterostructures under different biaxial strains: (a) BlueP, MoTe2 monolayer and BlueP/MoTe2; (b) BlueP, WTe2 monolayer and BlueP/WTe2; (c) and (d) for BlueP/MoTe2 and BlueP/WTe2 within the biaxial strains –4%–+4%, respectively.

    表 1  单层BlueP, MoTe2和WTe2及异质结BlueP/X Te2的晶格常数、带隙、晶格失配度, 以及异质结BlueP/X Te2的层间距

    Table 1.  Lattice constants a, band gaps Eg, lattice mismatch σ of BlueP, MoTe2 and WTe2 monolayers and BlueP/X Te2 heterostructures, and interlayer distance d0 of BlueP/X Te2 heterostructures.

    aEg/eVσ/%d0
    BlueP3.281.94 (间)
    MoTe23.551.11 (直)
    WTe23.551.08 (直)
    BlueP/MoTe23.390.6 (间)3.63.3
    BlueP/WTe23.430.713 (间)3.93.4
    DownLoad: CSV
  • [1]

    Gupta A, Sakthivel T, Seal S 2015 Prog. Mater. Sci. 73 44Google Scholar

    [2]

    Shi J, Tong R, Zhou X, Gong Y, Zhang Z, Ji Q, Zhang Y, Fang Q, Gu L, Wang X 2016 Adv. Mater. 28 10664Google Scholar

    [3]

    Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958Google Scholar

    [4]

    Chen S Y, Goldstein T, Venkataraman D, Ramasubramaniam A, Yan J 2016 Nano. Lett. 16 5852Google Scholar

    [5]

    Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111

    [6]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D, Liu K, Ji J, Li J 2014 Nano. Lett. 14 3185Google Scholar

    [7]

    Yu Y F, Hu S, Su L Q, Huang L J, Liu Y, Jin Z H, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L Y 2015 Nano Lett. 15 486Google Scholar

    [8]

    Nguyen C V 2018 Superlattices Microst. 116 79Google Scholar

    [9]

    Yu L, Lee Y H, Ling X, Santos E J G, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H 2014 Nano. Lett. 14 3055Google Scholar

    [10]

    Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S, Machida T 2015 Appl. Phys. Lett. 107 023109

    [11]

    Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587

    [12]

    Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396Google Scholar

    [13]

    Zandt T, Dwelk H, Janowitz C, Manzke R 2007 J. Alloys Compd. 442 216Google Scholar

    [14]

    Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar

    [15]

    Seok J, Lee J H, Cho S, Ji B, Kim H W, Kwon M, Kim D, Kim Y M, Oh S H, Kim S W 2017 2D Mater. 4 025061

    [16]

    Qiao H, Huang Z Y, Liu S Y, Liu Y D, Li J 2018 Ceram. Int. 44 21205Google Scholar

    [17]

    Muechler L, Alexandradinata A, Neupert T, Car R 2016 Phys. Rev. X 6 041069

    [18]

    Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar

    [19]

    Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar

    [20]

    Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C, Yuan K 2016 Nano Lett. 16 4903Google Scholar

    [21]

    Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar

    [22]

    Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y 2015 Sci. Rep. 5 09961Google Scholar

    [23]

    Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P 2016 ACS Nano. 10 3852Google Scholar

    [24]

    Wu E, Xie Y, Liu Q, Hu X, Liu J, Zhang D, Zhou C 2019 ACS Nano. 13 5430Google Scholar

    [25]

    Le H, Li J 2016 Appl. Phys. Lett. 108 083101Google Scholar

    [26]

    Li H, Li D, Luo H 2020 Phys. Status Solidi 257 2000006Google Scholar

    [27]

    Li H, Cui Y, Li W, Ye L, Mu L 2020 Appl. Phys. A 126 92Google Scholar

    [28]

    You B, Wang X, Zheng Z, Mi W 2016 Phys. Chem. Chem. Phys. 18 7381Google Scholar

    [29]

    Sun M, Chou J P, Yu J, Tang W 2017 Phys. Chem. Chem. Phys. 19 17324Google Scholar

    [30]

    Zhu J, Zhang J, Hao Y 2016 Jpn. J Appl. Phys. 55 080306Google Scholar

    [31]

    Bernardi M, Palummo M, Grossman J C 2013 Nano. Lett. 13 3664Google Scholar

    [32]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar

    [33]

    Mak K F, Shan J 2016 Nature Photon. 10 216Google Scholar

    [34]

    Liu G, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 46 2643Google Scholar

    [35]

    Duan X, Wang C, Pan A, Yu R, Duan X 2016 CHemInform 47 8859Google Scholar

    [36]

    Kumar A, Ahluwalia P K 2012 Eur. Phys. J. B 85 186Google Scholar

    [37]

    Terrones H, López-Urías F, Terrones M 2013 Sci. Rep. 3 1549Google Scholar

    [38]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 物理学报 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [39]

    马浩浩, 张显斌, 魏旭艳, 曹佳萌 2020 物理学报 69 117101Google Scholar

    Ma H H, Zhang X B, Wei X Y, Cao J M 2020 Acta Phys. Sin. v. 69 117101Google Scholar

    [40]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater 2 17033

    [41]

    Liu B, Liao Q, Zhang X, Du J, Zhang Y 2019 ACS Nano. 13 9057Google Scholar

    [42]

    Kresse G, Furthmüller J 1996 Comp. mat. er 6 15Google Scholar

    [43]

    Perdew J P, Burke K, Ernzerhof M, Erratum 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [44]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [45]

    Klime Jí, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201Google Scholar

    [46]

    Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar

    [47]

    Yang J, Lü T, Myint Y W, Pei J, Lu Y 2015 ACS Nano 9 6603Google Scholar

    [48]

    Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar

    [49]

    Pham K D, Phuc H V, Hieu N N, Hoi B D, Nguyen C V 2018 AIP Adv. 29 075207Google Scholar

    [50]

    Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C 2019 Appl. Surf. Sci. 497 143809Google Scholar

    [51]

    Zhang W, Zhang L 2017 Rsc Advances 7 34584Google Scholar

    [52]

    Sun M, Chou J P, Yu J, Tang W 2018 Phys. Chem. Chem. Phys. 20 24726Google Scholar

    [53]

    Zhang W X, He W H, Zhao J W, He C 2018 J. Solid. State. Chem. 265 257Google Scholar

    [54]

    Zhang Z H, Xie Z F, Liu J 2020 Phys. Chem. Chem. Phys. 22 5873Google Scholar

    [55]

    何文浩 2019 硕士学位论文 (西安: 长安大学)

    He W H 2019 M. S. Dissertation (Xi’an: Chang’an University) (in Chinese)

    [56]

    沈学础 2002 半导体光谱和光学性质 (北京科学出版社) 第76页

    Shen X C 2002 Spectra and Optical Properties of Semiconductors (Beijing Science Press) p76 (in Chinese)

    [57]

    Penn D R 1962 Phys. Rev. 128 2093Google Scholar

  • [1] Liu Chen-Xi, Pang Guo-Wang, Pan Duo-Qiao, Shi Lei-Qian, Zhang Li-Li, Lei Bo-Cheng, Zhao Xu-Cai, Huang Yi-Neng. First-principles study of influence of electric field on electronic structure and optical properties of GaN/g-C3N4 heterojunction. Acta Physica Sinica, 2022, 71(9): 097301. doi: 10.7498/aps.71.20212261
    [2] Song Rui, Wang Bi-Li, Feng Kai, Yao Jia, Li Xia. Effect of stress regulation on electronic structure and optical properties of TiOCl2 monolayer. Acta Physica Sinica, 2022, 71(7): 077101. doi: 10.7498/aps.71.20212023
    [3] Ye Jian-Feng, Qing Ming-Zhe, Xiao Qing-Quan, Wang Ao-Shuang, He An-Na, Xie Quan. First-principles study of electronic structure , magnetic and optical properties of Ti, V, Co and Ni doped two-dimensional CrSi2 materials. Acta Physica Sinica, 2021, 70(22): 227301. doi: 10.7498/aps.70.20211023
    [4] Xiong Zi-Qian, Zhang Peng-Cheng, Kang Wen-Bin, Fang Wen-Yu. Study on the electronic structure and photocatalytic properties of a novel monolayer TiO2. Acta Physica Sinica, 2020, 69(16): 166301. doi: 10.7498/aps.69.20200631
    [5] Wang Chuang, Zhao Yong-Hong, Liu Yong. First-principles calculations of magnetic and optical properties of Ga1–xCrxSb (x = 0.25, 0.50, 0.75). Acta Physica Sinica, 2019, 68(17): 176301. doi: 10.7498/aps.68.20182305
    [6] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [7] Zhang Jin-Shuai, Huang Qiu-Shi, Jiang Li, Qi Run-Ze, Yang Yang, Wang Feng-Li, Zhang Zhong, Wang Zhan-Shan. Stress and structure properties of X-ray W/Si multilayer under low temperature annealing. Acta Physica Sinica, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [8] Xie Zhi, Cheng Wen-Dan. First-principles study of electronic structure and optical properties of TiO2 nanotubes. Acta Physica Sinica, 2014, 63(24): 243102. doi: 10.7498/aps.63.243102
    [9] Cheng Xu-Dong, Wu Hai-Xin, Tang Xiao-Lu, Wang Zhen-You, Xiao Rui-Chun, Huang Chang-Bao, Ni You-Bao. First principles study on the electronic structures and optical properties of Na2Ge2Se5. Acta Physica Sinica, 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [11] Wang Yin, Feng Qing, Wang Wei-Hua, Yue Yuan-Xia. First-principles study on the electronic and optical property of C-Zn co-doped anatase TiO2. Acta Physica Sinica, 2012, 61(19): 193102. doi: 10.7498/aps.61.193102
    [12] Zhang Xiao-Chao, Zhao Li-Jun, Fan Cai-Mei, Liang Zhen-Hai, Han Pei-De. Electronic structures and optical properties of transition metals (Fe, Co, Ni, Zn) doped rutile TiO2. Acta Physica Sinica, 2012, 61(7): 077101. doi: 10.7498/aps.61.077101
    [13] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [14] Yang Li-Jun, Chen Hai-Chuan. First-principles calculations of electronic structure, optical and elastic properties of LiGaX2(X=S, Se, Te). Acta Physica Sinica, 2011, 60(1): 014207. doi: 10.7498/aps.60.014207
    [15] Yu Feng, Wang Pei-Ji, Zhang Chang-Wen. First-principles study of optical and electronic properties of N-doped SnO2. Acta Physica Sinica, 2010, 59(10): 7285-7290. doi: 10.7498/aps.59.7285
    [16] Zhang Xue-Jun, Gao Pan, Liu Qing-Ju. First-principles study on electronic structure and optical properties of anatase TiO2 codoped with nitrogen and iron. Acta Physica Sinica, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [17] Li Pei-Juan, Zhou Wei-Wei, Tang Yuan-Hao, Zhang Hua, Shi Si-Qi. Electronic structure,optical and lattice dynamical properties of CeO2:A first-principles study. Acta Physica Sinica, 2010, 59(5): 3426-3431. doi: 10.7498/aps.59.3426
    [18] Chen Qiu-Yun, Lai Xin-Chun, Wang Xiao-Ying, Zhang Yong-Bin, Tan Shi-Yong. First-principles study of the electronic structure and optical properties of UO2. Acta Physica Sinica, 2010, 59(7): 4945-4949. doi: 10.7498/aps.59.4945
    [19] Cui Dong-Meng, Xie Quan, Chen Qian, Zhao Feng-Juan, Li Xu-Zhen. First-principles study on the band structure and optical properties of strained Ru2Si3 semiconductor. Acta Physica Sinica, 2010, 59(3): 2027-2032. doi: 10.7498/aps.59.2027
    [20] Li Xu-Zhen, Xie Quan, Chen Qian, Zhao Feng-Juan, Cui Dong-Meng. The study on the electronic structure and optical properties of OsSi2. Acta Physica Sinica, 2010, 59(3): 2016-2021. doi: 10.7498/aps.59.2016
Metrics
  • Abstract views:  5909
  • PDF Downloads:  162
  • Cited By: 0
Publishing process
  • Received Date:  18 October 2020
  • Accepted Date:  21 November 2020
  • Available Online:  09 March 2021
  • Published Online:  20 March 2021

/

返回文章
返回