Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Investigation of hydrogen bond vibrations of ice

Qin Xiao-Ling Zhu Xu-Liang Cao Jing-Wen Wang Hao-Cheng Zhang Peng

Citation:

Investigation of hydrogen bond vibrations of ice

Qin Xiao-Ling, Zhu Xu-Liang, Cao Jing-Wen, Wang Hao-Cheng, Zhang Peng
PDF
HTML
Get Citation
  • Despite its simple molecular structure, water is still a mystery to scientists. For the atomic and molecular vibrational modes of ice, as is well known, there are two kinds of vibrations: intra-molecular O—H stretching vibration and H—O—H bending vibration within the molecules and three kinds of molecular spatial rotations. However, thirty years ago, a high flux inelastic neutron scattering experiment showed that there are two distinct characteristic peaks in the far-infrared molecular translational vibration region of many ice phases. The origins of these peaks have not been determined till now. In this work, based on the CASTEP code, a first-principles density functional theory plane wave programme, the vibrational spectra as well as the vibrational normal modes of a series of ice phases are investigated. Two kinds of intrinsic hydrogen bond vibrational modes are first found in hydrogen-ordered ice Ic. Then it is found to be a general rule among ice family. Based on the ideal model, we prove that the two vibrational modes can be classified as four-bond vibration and two-bond vibration. There are many coupling modes in-between due to tetrahedral structure deformation under high pressure. Besides, there are also some optical vibrational modes with lower energy in the translational region, such as cluster vibrations and inter-plane vibrations. In Ice VII/VIII and XV/VI, each of which consists of two sublattices, there exist non-hydrogen bond vibrations. These molecular translational vibrations can explain all the far-infrared vibrational spectrum of ice phase, which makes up the last piece of the jigsaw puzzle for the molecular vibration theory of ice. The two vibrational modes do not exist in liquid water due to the collapse of the rigid tetrahedral structure. Thus, a window remains for ice resonance absorption with minimum energy loss in water. This theory is expected to be applicable to industrial deicing, food thawing, gas hydrate mining, and biomolecule frozen molding, etc.
      Corresponding author: Zhang Peng, zhangpeng@sdu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11075094)
    [1]

    邓耿, 尉志武 2016 科学通报 61 3181Google Scholar

    Deng G, Wei Z W 2016 Chin. Sci. Bull. 61 3181Google Scholar

    [2]

    Pauling L 1960 The Nature of Chemical Bond (New York: Cornell University Press) pp449–504

    [3]

    Pople J A 1957 Proc. R. Soc. London, Ser. A 239 550Google Scholar

    [4]

    Claussen W F 1951 J. Chem. Phys. 19 1425Google Scholar

    [5]

    Frank H S, Wen W Y 1957 Discuss. Faraday Soc. 24 133Google Scholar

    [6]

    Symons M C R 1972 Nature 239 257Google Scholar

    [7]

    Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A 2004 Science 304 995Google Scholar

    [8]

    Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J 2004 Science 306 851Google Scholar

    [9]

    Sun Q 2013 Chem. Phys. Lett. 568 90Google Scholar

    [10]

    Nilsson A, Wernet Ph, Nordlund D, Bergmann U, Cavalleri M 2005 Science 308 793AGoogle Scholar

    [11]

    Smith J D, Cappa C D, Messer B M, Cappa C D 2005 Science 308 793BGoogle Scholar

    [12]

    Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2008 Chem. Phys. Lett. 460 387Google Scholar

    [13]

    Raichlin Y, Millo A, Katzir A 2004 Phys. Rev. Lett. 93 185703Google Scholar

    [14]

    Russo J, Tanaka H 2014 Nat. Commun. 5 3556Google Scholar

    [15]

    Ktihne T D, Khaliullin R Z 2013 Nat. Commun. 4 1450Google Scholar

    [16]

    Ktihne T D, Khaliullin R Z 2014 J. Am. Chem. Soc. 136 3395Google Scholar

    [17]

    Bertie J E, Whalley E 1967 J. Chem. Phys. 46 1271Google Scholar

    [18]

    Tammann G 1900 Ann. Phys. 307 1Google Scholar

    [19]

    Demontis P, LeSar R, Klein M L 1988 Phys. Rev. Lett. 60 2284Google Scholar

    [20]

    Bertie J E, Calvert L D, Whalley E 1963 J. Chem. Phys. 38 840Google Scholar

    [21]

    Bridgman P W 1912 Proc. Am. Acad. Arts Sci. 47 441Google Scholar

    [22]

    Bridgman P W 1937 J. Chem. Phys. 5 964Google Scholar

    [23]

    Whalley E, Davidson D W 1965 J. Chem. Phys. 43 2148Google Scholar

    [24]

    Whalley E, Davidson D W, Heath J B R 1966 J. Chem. Phys. 45 3976Google Scholar

    [25]

    Kuhs W F, Finney J L, Vettier C, Bliss D V 1984 J. Chem. Phys. 81 3612Google Scholar

    [26]

    Whalley E, Heath J B R, Davidson D W 1968 J. Chem. Phys. 48 2362Google Scholar

    [27]

    Tajima Y, Matsuo T, Suga H 1982 Nature 299 810Google Scholar

    [28]

    Hirsch K R, Holzapfel W B 1986 J. Chem. Phys. 84 2771Google Scholar

    [29]

    Lobban C, Finney J L, Kuhs W F 1998 Nature 391 268Google Scholar

    [30]

    Matsuo T, Tajima Y, Suga H 1986 J. Phys. Chem. Solids 47 165Google Scholar

    [31]

    Salzmann C G, Radaelli P G, Mayer A E, Finney J L 2006 Science 311 1758Google Scholar

    [32]

    Tribello G A, Slater B, Salzmann C G 2006 J. Am. Chem. Soc. 128 12594Google Scholar

    [33]

    Salzmann C G, Radaelli P G, Mayer E, Finney J L 2009 Phys. Rev. Lett. 103 105701Google Scholar

    [34]

    Falenty A, Hansen T C, Kuhs W F 2014 Nature 516 213Google Scholar

    [35]

    del Rosso L, Celli M, Ulivi L 2016 Nat. Commun. 7 13394Google Scholar

    [36]

    Millot M, Hamel S, Rygg J R, Celliers P M, Collins G W, Coppari F, Fratanduono D E, Jeanloz R, Swift D C, Eggert J H 2018 Nat. Phys. 14 297Google Scholar

    [37]

    Millot M, Coppari F, Rygg J R, Barrios A C, Hamel S, Swift D C 2019 Nature 569 251Google Scholar

    [38]

    Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva IV 2015 Nature 519 443Google Scholar

    [39]

    Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1Google Scholar

    [40]

    Koga K, Zeng X C, Tanaka H 1997 Phys. Rev. Lett. 79 5262Google Scholar

    [41]

    Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature 577 60Google Scholar

    [42]

    Kuhs W F, Lehmann M S 1983 J. Phys. Chem. 87 4312Google Scholar

    [43]

    Konig H 1943 Z. Kristallogr. 105 279Google Scholar

    [44]

    Dowell L G, Rinfret A P 1960 Nature 188 1144Google Scholar

    [45]

    Murray B J, Bertram A K 2006 Phys. Chem. Chem. Phys. 8 186Google Scholar

    [46]

    Murray B J 2008 Environ. Res. Lett. 3 025008Google Scholar

    [47]

    Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. U. S. A. 109 1041Google Scholar

    [48]

    Whalley E 1981 Science 211 389Google Scholar

    [49]

    Mayer E, Hallbrucker A 1987 Nature 325 601Google Scholar

    [50]

    Kuhs W F, Bliss D V, Finney J L 1987 J. Phys. Colloq. 48 631Google Scholar

    [51]

    Kuhs W F, Sippel C, Falenty A, Hansen T C 2012 Proc. Natl. Acad. Sci. U. S. A. 109 21259Google Scholar

    [52]

    Murray B, Knopf D, Bertram A 2005 Nature 434 202Google Scholar

    [53]

    Falenty A, Kuhs W F 2009 J. Phys. Chem. B 113 15975Google Scholar

    [54]

    Baker J M, Dore J C, Behrens P 1997 J. Phys. Chem. B 101 6226Google Scholar

    [55]

    Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60Google Scholar

    [56]

    del Rosso L, Celli M, Grazzi F, Catti M, Ulivi L 2020 Nat. Mater. 19 663Google Scholar

    [57]

    Komatsu K, Machida S, Noritake F, Hattori T, Kagi H 2020 Nat. Commun. 11 464Google Scholar

    [58]

    Lekner J 1997 Physica B 240 263Google Scholar

    [59]

    黄盈盈, 苏艳, 赵纪军 2019 高压物理学报 33 010001Google Scholar

    Huang Y Y, Su Y, Zhao J J 2019 Chin. J. High Pressure Phys. 33 010001Google Scholar

    [60]

    Bartels-Rausch T, Bergeron V, Csrtwright J H E, Escribano R, Finney J L, Grothe H 2012 Rev. Mod. Phys. 84 885Google Scholar

    [61]

    Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572Google Scholar

    [62]

    Kamb B 1964 Acta Crystallogr. 17 1437Google Scholar

    [63]

    Finch E D 1968 J. Chem. Phys. 49 4361Google Scholar

    [64]

    Kamb B, Hamilton W C, Laplaca S J, Prakash A 1971 J. Chem. Phys. 55 1934Google Scholar

    [65]

    Fortes A D, Wood I G, Brodholt J P, Vočadlo L 2003 J. Chem. Phys. 119 4567Google Scholar

    [66]

    Bauer M, Elsaesser M S, Winkel K, Mayer E, Loerting T 2008 Phys. Rev. B 77 220105Google Scholar

    [67]

    Scheuermann M, Geil B, Löw F, Fujara F 2009 J. Chem. Phys. 130 024506Google Scholar

    [68]

    Bertie J E, Whalley E 1964 J. Chem. Phys. 40 1646Google Scholar

    [69]

    Bertie J E, Labbé H J, Whalley E 1968 J. Chem. Phys. 49 775Google Scholar

    [70]

    Bertie J E, Francis B F 1980 J. Chem. Phys. 72 2213Google Scholar

    [71]

    Bertie J E, Francis B F 1982 J. Chem. Phys. 77 1Google Scholar

    [72]

    Li J C, Londono D, Ross D K, Finney J L, Bennington S M, Taylor A D 1992 J. Phys. Condens. Matter 4 2109Google Scholar

    [73]

    Kamb B 1965 Science 150 205Google Scholar

    [74]

    Kuhs W F, Ahsbahs H, Londono D, Finney J L 1989 Physica B 156 684Google Scholar

    [75]

    Whale T F, Clark S J, Finney J L 2013 J. Raman Spectrosc. 44 290Google Scholar

    [76]

    Komatsu K, Noritake F, Machida S 2016 Sci. Rep. 6 28920Google Scholar

    [77]

    Nanda K D, Beran G J O 2013 J. Phys. Chem. Lett. 4 3165Google Scholar

    [78]

    Gasser T M, Thoeny A, Plaga L 2018 Chem. Sci. 9 4224Google Scholar

    [79]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G 1999 Nature 398 681Google Scholar

    [80]

    Vaks V G, Zinenko V I 1981 Solid State Commun. 39 643Google Scholar

    [81]

    Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K 2003 Phys. Rev. B 68 014106Google Scholar

    [82]

    Besson J M, Kobayashi M, Nakai T, Endo S 1997 Phys. Rev. B 55 11191Google Scholar

    [83]

    Pruzan P, Chervin J C, Canny B 1993 J. Chem. Phys. 99 9842Google Scholar

    [84]

    Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K 1996 Science 273 218Google Scholar

    [85]

    Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673Google Scholar

    [86]

    Klug D D, Handa Y P, Tse J S, Whalley E 1989 J. Chem. Phys. 90 2390Google Scholar

    [87]

    Minceva-Sukarova B, Sherman W F, Wilkinson G R 1984 J. Phys. C: Solid State Phys. 17 5833Google Scholar

    [88]

    Li J C, Londono J D, Ross D K, Finney J L, Tomkinson J, Sherman W F 1991 J. Chem. Phys. 94 6770Google Scholar

    [89]

    Garg A K 1988 Phys. Status Solidi A 110 467Google Scholar

    [90]

    Tse J S, Klein M L, McDonald I R 1984 J. Chem. Phys. 81 6124Google Scholar

    [91]

    Holzapfel W B 1972 J. Chem. Phys. 56 712Google Scholar

    [92]

    Polian A, Grimsditch M 1984 Phys. Rev. Lett. 52 1312Google Scholar

    [93]

    Flores-Livas J A, Sanna A, Graužinytė M, Davydov A, Goedecker S, Marques M A L 2017 Sci. Rep. 7 6825Google Scholar

    [94]

    Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71Google Scholar

    [95]

    Marqués M, Ackland G, Loveday J 2009 High Pressure Res. 29 208Google Scholar

    [96]

    Putrino A, Parrinello M 2002 Phys. Rev. Lett. 88 176401Google Scholar

    [97]

    Goncharov A F, Struzhkin V V, Mao H K, Hemley R J 1999 Phys. Rev. Lett. 83 1998Google Scholar

    [98]

    Men Z, Fang W, Li D, Li Z, Sun C 2014 Sci. Rep. 4 4606Google Scholar

    [99]

    Giauque W F, Stout J W 1936 J. Am. Chem. Soc. 58 1144Google Scholar

    [100]

    Kawada S 1972 J. Phys. Soc. Jpn. 32 1442Google Scholar

    [101]

    Leadbetter A J, Ward R C 1985 J. Chem. Phys. 82 424Google Scholar

    [102]

    Line C M B, Whitworth R W 1996 J. Chem. Phys. 104 10008Google Scholar

    [103]

    Jackson S M, Nield V M, Whitworth R W, Oguro M, Wilson C C 1997 J. Phys. Chem. B 101 6142Google Scholar

    [104]

    Salzmann C G, Radaelli P G, Finney J L, Mayer E 2008 Phys. Chem. Chem. Phys. 10 6313Google Scholar

    [105]

    Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Phys. Chem. Chem. Phys. 8 3088Google Scholar

    [106]

    Zhang J, Xiao Z, Kuo J 2010 J. Chem. Phys. 132 184506Google Scholar

    [107]

    Tran H, Cunha A V, Shephard J J, Shalit A, Hamm P, Jansen T L C, Salzmann C G 2017 J. Chem. Phys. 147 144501Google Scholar

    [108]

    Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Chem. Phys. Lett. 429 469Google Scholar

    [109]

    Yoshimura Y, Stewart S T, Mao H K, Hemley R J 2007 J. Chem. Phys. 126 174505Google Scholar

    [110]

    Koza M M, Schober H, Tölle A, Fujara F, Hansen T 1999 Nature 397 660Google Scholar

    [111]

    Koza M M, Schober H, Parker S F, Peters J 2008 Phys. Rew. B 77 104306Google Scholar

    [112]

    Huang Y Y, Zhu C Q, Wang L, Cao X X, Su Y, Jiang X, Meng S, Zhao J J, Zeng X C 2016 Sci. Adv. 2 e1501010Google Scholar

    [113]

    Huang Y Y, Zhu C Q, Wang L, Zhao J J and Zeng X C 2017 Chem. Phys. Lett. 671 186Google Scholar

    [114]

    Matsui T, Hirata M, Yagasaki T, Matsumoto M, Tanaka H 2017 J. Chem. Phys. 147 091101Google Scholar

    [115]

    Liu Y, Ojamäe L 2018 Phys. Chem. Chem. Phys. 20 8333Google Scholar

    [116]

    Engel E A, Anelli A, Ceriotti M, Pickard C J, Needs R J 2018 Nat. Commun. 9 2173Google Scholar

    [117]

    Matsui T, Yagasaki T, Matsumoto M, Tanaka H 2019 J. Chem. Phys. 150 041102Google Scholar

    [118]

    del Rosso L, Grazzi F, Celli M, Colognesi D, Garcia-Sakai V, Ulivi L 2016 J. Phys. Chem. C 120 26955Google Scholar

    [119]

    Bertie J E, Labbe H J, Whalley E 1969 J. Chem. Phys. 50 4501Google Scholar

    [120]

    Wong P T T, Whalley E 1976 J. Chem. Phys. 65 829Google Scholar

    [121]

    Rasetti F 1932 Nuovo Cirnento 9 72Google Scholar

    [122]

    Hibben J H 1937 J. Chem. Phys. 5 166Google Scholar

    [123]

    Cross P C, Burnham J, Leighton P A 1937 J. Am. Chem. Soc. 59 1134Google Scholar

    [124]

    Narayanaswarny P K 1948 Proc. Indian Acad. Sci. 27 311Google Scholar

    [125]

    Valkov V I, Maslenkova G L 1956 Opt. Spektrosk. 1 881

    [126]

    Taylor M J, Whalley E 1964 J. Chem. Phys. 40 1660Google Scholar

    [127]

    Marchi M, Tse J S, Klein M L 1986 J. Chem. Phys. 85 2414Google Scholar

    [128]

    Renker B 1973 International Symposium on the Physics and Chemistry of Ice Ottowa, Ont., Canada, August 14–18, 1972 p82

    [129]

    Li J C, Ross D K, Howe L, Hall P G, Tomkinson J 1989 Physica B 156 376Google Scholar

    [130]

    Klug D D, Tse J S, Whalley E 1991 J. Chem. Phys. 95 7011Google Scholar

    [131]

    Li J C 1996 J. Chem. Phys. 105 6733Google Scholar

    [132]

    Li J C, Ross D K 1993 Nature 365 327Google Scholar

    [133]

    Morrison I, Jenkins S 1999 Physica B 263 442Google Scholar

    [134]

    Klotz S, Strässle T, Salzmann C G, Philippe J, Parker S F 2005 Europhys. Lett. 72 576Google Scholar

    [135]

    Zhang P, Tian L, Zhang Z P, Shao G, Li J C 2012 J. Chem. Phys. 137 044504Google Scholar

    [136]

    He X, Sode O, Xantheas S S, Hirata S 2012 J. Chem. Phys. 137 204505Google Scholar

    [137]

    Zhang P, Liu Y, Yu H, Han S H, Lü Y B, Lv M S, Cong W Y 2014 Chin. Phys. B 23 026103Google Scholar

    [138]

    Zhang P, Wang Z, Lü Y B, Ding Z W 2016 Sci. Rep. 6 29273Google Scholar

    [139]

    Yuan Z Y, Zhang P, Yao S K, Lü Y B, Yang H Z, Luo H W, Zhao Z J 2017 RSC Adv. 7 36801Google Scholar

    [140]

    Yao S K, Zhang P, Zhang Y, Lü Y B, Yang T l, Sun B G, Yuan Z Y, Luo H W 2017 RSC Adv. 7 31789Google Scholar

    [141]

    Jiang L, Yao S K, Zhang K, Wang Z R, Luo H W, Zhu X L, Gu Y, Zhang P 2018 Molecules 23 2780Google Scholar

    [142]

    Qin X L, Zhu X L, Cao J W, Jiang L, Gu Y, Wang X C, Zhang P 2019 Molecules 24 3115Google Scholar

    [143]

    Zhao Z J, Qin X L, Cao J W, Zhu X L, Yang Y C, Wang H C, Zhang P 2019 ACS Omega 4 18936Google Scholar

    [144]

    Cao J W, Chen J Y, Qin X L, Zhu X L, Jiang L, Gu Y, Yu X H, Zhang P 2019 Molecules 24 3135Google Scholar

    [145]

    Zhang K, Zhang P, Wang Z R, Zhu X L, Lu Y B, Guan C B, Li Y H 2018 Molecules 23 1781Google Scholar

    [146]

    Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C 123 14880Google Scholar

    [147]

    Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Liu Y, Kolesnikov A I, Zhang P 2020 J. Phys. Chem. C 124 1165Google Scholar

    [148]

    Wei Z W, Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Zhang P 2019 AIP Adv. 9 115118Google Scholar

    [149]

    Zhu X L, Yuan Z Y, Jiang L, Zhang K, Wang Z R, Luo H W, Gu Y, Cao J W, Qin X L, Zhang P 2019 New J. Phys. 21 043054Google Scholar

    [150]

    Wang Z R, Zhu X L, Jiang L, Zhang K, Luo H W, Gu Y, Zhang P 2019 Materials 12 246Google Scholar

    [151]

    Matsumoto M, Yagasaki T, Tanaka H 2018 J. Comput. Chem. 39 61Google Scholar

    [152]

    Wang H C, Zhu X L, Cao J W, Qin X L, Yang Y C, Niu T X, LüY B, Zhang P 2020 New J. Phys. 22 093066Google Scholar

    [153]

    Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413Google Scholar

    [154]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515Google Scholar

    [155]

    Li J C, Burnham C, Kolesnikov A I, Eccleston R S 1999 Phys. Rev. B 59 9088Google Scholar

    [156]

    Kolesnikov A I, Li J C, Ross D K, et al. 1992 Phys. Lett. A 168 308Google Scholar

  • 图 1  常态冰Ih相的声子态密度(PDOS)谱. 横轴波数的单位是cm–1, 四个独立的振动带从左到右依次是分子间平移振动带(translation), 分子转动振动(libration)带, 分子内弯曲振动(bending)带, 分子内伸缩振动(stretching)带

    Figure 1.  Phonon density of states (PDOS) spectrum of ice Ih. The four independent vibration bands from left to right are translation band, libration band, bending band, and stretching band.

    图 2  K点和截断能收敛性测试. 总能量与K点间隔的关系如图(a), 与截断能的关系如图(b)[141]

    Figure 2.  Diagram of the K-point and energy cutoff convergence tests. The total energy against k-point separation is shown in (a) and the cutoff convergence is shown in (b)[141].

    图 3  氢有序的冰Ic相的INS谱和PDOS谱, 横轴单位为cm–1(底轴)和meV(顶轴)

    Figure 3.  INS spectrum and PDOS spectrum of hydrogen ordered Ice Ic, the units of horizontal axis are cm–1 (bottom axis) and MeV (top axis).

    图 4  (a)布里渊区中的声子色散曲线; (b)归一化声子态密度(PDOS). PDOS曲线的纵坐标与图(a)中的纵坐标对应

    Figure 4.  (a) The Phonon dispersion curves; (b) the corresponding integrated PDOS spectrum.

    图 5  氢有序的Ic相理想模型平动区的三种简正模式. 因为原胞仅含两个水分子, 为显示整体的振动情况, 使用了超胞来演示两类振动模式. 绿色箭头表示振动方向, 大小正比于振幅

    Figure 5.  The three normal modes in the translational region of hydrogen ordered Ice Ic. The primitive cell contains two water molecules, and in order to show the vibration of the whole, the supercell is used to demonstrate two vibration modes. The green arrow indicates the direction of the vibration, and the magnitude is proportional to the amplitude.

    图 6  氢有序冰相PDOS计算谱, 按照压强大小排列, 从上到下依次是冰X, VIII, XIII, XV, XIV, II, IX, Ic和XI. 黄色矩形区域对应两个氢键特征峰的位置

    Figure 6.  PDOS spectrum of hydrogen ordered Ice phases, arranged by pressure, from top to bottom are ice X, VIII, XIII, XV, XIV, II, IX, Ic and XI. The yellow rectangle region corresponds to the positions of two characteristic peaks of hydrogen bond.

    图 7  冰X相的简正振动模式, 其中450, 998, 1260和1508 cm–1波数处的振动模式都是三重简并的, 2115 cm–1处的振动模式是二重简并的

    Figure 7.  The normal modes of ice X, the vibration modes at 450, 998, 1260 and 1508 cm–1 are triplically degenerate, and the vibration modes at 2115 cm–1 are doubly degenerate.

    图 8  冰VIII和冰VII的PDOS谱对比图. 插图为冰VIII的INS谱和计算得到的PDOS谱, 范围在2—140 meV

    Figure 8.  PDOS spectrum of Ice VIII and VII. The inset shows the INS spectrum of Ice VIII and the computed PDOS spectrum (2–140 meV).

    图 9  (a)冰VIII和(b)冰VII的双键振动(红色)、四键振动(蓝色)、非氢键振动(绿色)三类模式的分布图. 插图为计算模拟得到的VIII和VII的PDOS谱, 范围0—350 cm–1

    Figure 9.  Statistical distribution of two-bond vibration (red), four-bond vibration (blue) and non-hydrogen bond vibration modes (green) of Ice VIII (a) and Ice VII (b). The insertation shows the PDOS spectrum of Ice VIII and VII (0–350 cm–1).

    图 10  从上到下依次是冰Ih相的INS实验谱和模拟的PDOS谱, 冰Ih对应的氢有序相冰XI的PDOS谱, 理想模型Ic的PDOS谱

    Figure 10.  The INS spectrum and PDOS spectrum of ice Ih, the PDOS spectrum of hydrogen ordered ice XI and the PDOS spectrum of ice Ic.

    图 11  (a)有序相冰XI和(b)冰Ih的双键振动、四键振动模式的统计分布图. 插图为计算模拟得到的XI, Ih的PDOS谱

    Figure 11.  Statistical distribution of two-bond and four-bond vibrational modes of (a) ice XI and (b) ice Ih. The illustration shows the PDOS spectrum of XI and Ih.

    图 12  冰V/XII和冰VI/XV的PDOS谱对比图. 插图为冰VI和V的INS谱, 范围2—140 meV

    Figure 12.  Comparisons of PDOS spectrum of Ice V/XII and Ice VI/XV. The insertation shows the INS spectrum of ice VI and V (2–140 meV).

    图 13  冰VIII平动区161 cm–1处的简正振动和冰XV在107 cm–1处的振动; 冰II平动区115 cm–1处的简正振动和冰IX在116 cm–1处的振动示意图

    Figure 13.  The normal mode at 161 cm–1 in ice VIII and 107 cm–1 in ice XV; The normal mode at 115 cm–1 in ice II and 116 cm–1 in ice IX.

    图 14  在直角坐标系下yz平面内展示水分子的三种转动 (a)绕z轴的扭曲转动; (b)绕y轴的面间摇摆; (c)绕x轴的面内摇摆

    Figure 14.  Three rotations of H2O: (a) Twisting around the z-axis; (b) wagging around the y-axis; (c) rocking around the x-axis

    图 15  冰Ih相的INS谱和冰XVII, XVI的PDOS谱. 蓝红两条虚线标记出冰Ih相实验谱两个氢键振动峰(226和303 cm–1)的位置

    Figure 15.  INS spectrum of ice Ih and PDOS spectrum of ice XVII and XVI. The blue and red dotted lines mark the positions of the two hydrogen bond vibration peaks (226 and 303 cm–1) in ice Ih.

    图 16  水与冰Ih的红外吸收谱对比图

    Figure 16.  Infrared absorption spectrum of water and ice Ih.

    图 A1  氢有序冰Ic相原胞及其两类氢键振动模式

    Figure A1.  Two kinds of H-bond vibrational modes in ice Ic.

    图 A2  氢有序冰相IX、II和XIV中两类氢键振动模式. 波数在245, 206和194 cm–1处的振动分别为冰IX, II和XIV的双键振动模式; 波数在307, 318和292 cm–1处的分别为冰IX, II和XIV的四键振动模式 (冰XIV中振动明显的分子用黄色标记)

    Figure A2.  Two kinds of H-bond vibrational modes in ice IX, II, and XIV. The two-bond vibrational modes of Ice IX, II and XIV at 245, 206 and 194 cm–1 are respectively; The four-bond vibrational modes of ice IX, II and XIV at 307, 318 and 292 cm–1, respectively (The yellow moleculars vibrate obviously in ice XIV).

    图 A3  冰VII相在178 cm–1处的双键振动模式和在255 cm–1处的四键振动模式; 冰XVI相在160 cm–1处的双键振动模式和在237 cm–1处的四键振动模式 (冰VII中振幅明显的分子用黄色标记)

    Figure A3.  Two-bond vibrational mode at 178 cm–1 and four-bond vibrational mode at 255 cm–1 in Ice VII phase; two-bond vibration mode at 160 cm–1 and four bond vibration mode at 237 cm–1 in ice VIII (The yellow moleculars vibrate obviously).

    图 A4  冰XI相220 cm–1处的双键振动模式和310 cm–1处的四键振动模式; 冰Ih相244 cm–1处的双键振动模式和327 cm–1处的四键振动模式

    Figure A4.  Two-bond vibrational mode at 220 cm–1 and four-bond vibrational mode at 310 cm–1 in ice XI; two-bond vibrational mode at 244 cm–1 and four-bond vibrational mode at 327 cm–1 in ice Ih.

    图 A5  冰XIII相和冰V相在223/225 cm–1处的双键振动模式和318/312 cm–1处的四键振动模式; 冰XV相和冰VI相在206/231 cm–1处的双键振动模式和285/328 cm–1处的四键振动模式 (冰VII中振幅明显的分子用黄色原子标记)

    Figure A5.  Two-bond vibrational mode at 223/225 cm–1 and four-bond vibrational mode at 318/312 cm–1 in ice XIII/V; two-bond vibrational mode at 206/231 cm–1 and four-bond vibrational mode at 285/328 cm–1 of ice XV/VI (The yellow moleculars vibrate obviously).

    图 A6  冰XVII相209 cm–1处的双键振动模式和301 cm–1处的四键振动模式; 冰XVI相220 cm–1处的双键振动模式和314 cm–1处的四键振动模式 (振幅明显的原子振动用黄色标记)

    Figure A6.  Two-bond mode at 209 cm–1 and four-bond mode at 301 cm–1 in ice XVII; two-bond mode at 220 cm–1 and four-bond mode at 314 cm–1 of ice XVI (The yellow moleculars vibrate obviously).

    表 1  部分冰相的计算参数. 包括静水压强、截断能、K点取样网格或K点间隔

    Table 1.  Calculation parameters of ice phases, including calculation of pressure, cutoff energy, K-mesh or seperation.

    Ice phaseEnvironmental pressure/GPaEnergy cutoff/eVK-mesh or seperation
    Ih08303 × 2 × 2
    Ic012007 × 7 × 8
    II0.507502 × 2 × 2
    V1.007502 × 2 × 1
    VI2.007502 × 2 × 2
    VII2.408303 × 3 × 2
    VIII2.4010004 × 4 × 5
    IX0.307502 × 2 × 2
    X120.008300.07/Å
    XI07506 × 6 × 3
    XIII1.008302 × 3 × 1
    XIV0.557502 × 2 × 3
    XV0.907504 × 4 × 4
    XVI07501 × 1 × 1
    XVII0.408301 × 1 × 1
    DownLoad: CSV

    表 2  各冰相的氢键、氢氧共价键的长度和相邻的氧原子的距离(单位: Å), H—O—H键角, 4个振动区域的波数范围(单位: cm–1), 结构优化密度(单位: g/cm–3)

    Table 2.  Length of H-bond, OH covalent bond and distance of adjacent O atoms (in Å), H—O—H bond angle, wavenumber range of four vibration regions of ice phases (in cm–1), structure optimization density (in g/cm–3).

    ICE H···O O—H O—H···O HOH Angle Translation Libration Bending Stretching Density
    Ice X 1.138 1.138 2.275 109.5 3.3
    Ice VIII 2.038 0.976 3.013 105.1 161-254 502-1032 1589-1742 3357-3480 1.42
    Ice XIII 1.786–3.173 0.980–0.987 2.751–2.874 102.7–108.1 50–318 524–982 1629–1721 3198–3441 1.18
    Ice XV 1.902–1.991 0.978–0.981 2.886–2.908 101.6–107.2 73–285 477–936 1609–1709 3278–3485 1.21
    Ice XIV 1.986–1.838 0.978–0.984 2.793–2.951 102.8–105.3 104–292 502–933 1647–1735 3234–3478 1.15
    Ice II 1.815–2.057 0.976–0.986 2.796–3.023 102.8/105.0 142–318 522–969 1659–1723 3193–3483 1.06
    Ice IX 1.829–1.849 0.984/0.985 2.802–2.824 104.2/104.7 67–307 580–1003 1639–1716 3177–3391 1.01
    Ice Ic 1.799 1.000 2.798 105.6 230/321 589–1053 1631–1708 3113–3334 0.89
    Ice XI 1.813/1.814 0.987/0.988 2.799/2.802 105.7/106.0 47–310 586–1063 1634–1710 3110–3353 0.89
    Ice Ih 1.788–1.866 0.986–0.989 2.784–2.843 104.7–106.2 33–327 579–1030 1651–1706 3110–3363 0.88
    XVII 1.806–1.840 0.986–0.988 2.791–2.826 105.0–107.9 36–301 588–1037 1635–1709 3125–3369 0.81
    XVI 1.797–1.845 0.984–0.990 2.768–2.830 105.1–106.3 53–315 594–1053 1649–1715 3117–3380 0.80
    DownLoad: CSV
  • [1]

    邓耿, 尉志武 2016 科学通报 61 3181Google Scholar

    Deng G, Wei Z W 2016 Chin. Sci. Bull. 61 3181Google Scholar

    [2]

    Pauling L 1960 The Nature of Chemical Bond (New York: Cornell University Press) pp449–504

    [3]

    Pople J A 1957 Proc. R. Soc. London, Ser. A 239 550Google Scholar

    [4]

    Claussen W F 1951 J. Chem. Phys. 19 1425Google Scholar

    [5]

    Frank H S, Wen W Y 1957 Discuss. Faraday Soc. 24 133Google Scholar

    [6]

    Symons M C R 1972 Nature 239 257Google Scholar

    [7]

    Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A 2004 Science 304 995Google Scholar

    [8]

    Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J 2004 Science 306 851Google Scholar

    [9]

    Sun Q 2013 Chem. Phys. Lett. 568 90Google Scholar

    [10]

    Nilsson A, Wernet Ph, Nordlund D, Bergmann U, Cavalleri M 2005 Science 308 793AGoogle Scholar

    [11]

    Smith J D, Cappa C D, Messer B M, Cappa C D 2005 Science 308 793BGoogle Scholar

    [12]

    Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2008 Chem. Phys. Lett. 460 387Google Scholar

    [13]

    Raichlin Y, Millo A, Katzir A 2004 Phys. Rev. Lett. 93 185703Google Scholar

    [14]

    Russo J, Tanaka H 2014 Nat. Commun. 5 3556Google Scholar

    [15]

    Ktihne T D, Khaliullin R Z 2013 Nat. Commun. 4 1450Google Scholar

    [16]

    Ktihne T D, Khaliullin R Z 2014 J. Am. Chem. Soc. 136 3395Google Scholar

    [17]

    Bertie J E, Whalley E 1967 J. Chem. Phys. 46 1271Google Scholar

    [18]

    Tammann G 1900 Ann. Phys. 307 1Google Scholar

    [19]

    Demontis P, LeSar R, Klein M L 1988 Phys. Rev. Lett. 60 2284Google Scholar

    [20]

    Bertie J E, Calvert L D, Whalley E 1963 J. Chem. Phys. 38 840Google Scholar

    [21]

    Bridgman P W 1912 Proc. Am. Acad. Arts Sci. 47 441Google Scholar

    [22]

    Bridgman P W 1937 J. Chem. Phys. 5 964Google Scholar

    [23]

    Whalley E, Davidson D W 1965 J. Chem. Phys. 43 2148Google Scholar

    [24]

    Whalley E, Davidson D W, Heath J B R 1966 J. Chem. Phys. 45 3976Google Scholar

    [25]

    Kuhs W F, Finney J L, Vettier C, Bliss D V 1984 J. Chem. Phys. 81 3612Google Scholar

    [26]

    Whalley E, Heath J B R, Davidson D W 1968 J. Chem. Phys. 48 2362Google Scholar

    [27]

    Tajima Y, Matsuo T, Suga H 1982 Nature 299 810Google Scholar

    [28]

    Hirsch K R, Holzapfel W B 1986 J. Chem. Phys. 84 2771Google Scholar

    [29]

    Lobban C, Finney J L, Kuhs W F 1998 Nature 391 268Google Scholar

    [30]

    Matsuo T, Tajima Y, Suga H 1986 J. Phys. Chem. Solids 47 165Google Scholar

    [31]

    Salzmann C G, Radaelli P G, Mayer A E, Finney J L 2006 Science 311 1758Google Scholar

    [32]

    Tribello G A, Slater B, Salzmann C G 2006 J. Am. Chem. Soc. 128 12594Google Scholar

    [33]

    Salzmann C G, Radaelli P G, Mayer E, Finney J L 2009 Phys. Rev. Lett. 103 105701Google Scholar

    [34]

    Falenty A, Hansen T C, Kuhs W F 2014 Nature 516 213Google Scholar

    [35]

    del Rosso L, Celli M, Ulivi L 2016 Nat. Commun. 7 13394Google Scholar

    [36]

    Millot M, Hamel S, Rygg J R, Celliers P M, Collins G W, Coppari F, Fratanduono D E, Jeanloz R, Swift D C, Eggert J H 2018 Nat. Phys. 14 297Google Scholar

    [37]

    Millot M, Coppari F, Rygg J R, Barrios A C, Hamel S, Swift D C 2019 Nature 569 251Google Scholar

    [38]

    Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva IV 2015 Nature 519 443Google Scholar

    [39]

    Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1Google Scholar

    [40]

    Koga K, Zeng X C, Tanaka H 1997 Phys. Rev. Lett. 79 5262Google Scholar

    [41]

    Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature 577 60Google Scholar

    [42]

    Kuhs W F, Lehmann M S 1983 J. Phys. Chem. 87 4312Google Scholar

    [43]

    Konig H 1943 Z. Kristallogr. 105 279Google Scholar

    [44]

    Dowell L G, Rinfret A P 1960 Nature 188 1144Google Scholar

    [45]

    Murray B J, Bertram A K 2006 Phys. Chem. Chem. Phys. 8 186Google Scholar

    [46]

    Murray B J 2008 Environ. Res. Lett. 3 025008Google Scholar

    [47]

    Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. U. S. A. 109 1041Google Scholar

    [48]

    Whalley E 1981 Science 211 389Google Scholar

    [49]

    Mayer E, Hallbrucker A 1987 Nature 325 601Google Scholar

    [50]

    Kuhs W F, Bliss D V, Finney J L 1987 J. Phys. Colloq. 48 631Google Scholar

    [51]

    Kuhs W F, Sippel C, Falenty A, Hansen T C 2012 Proc. Natl. Acad. Sci. U. S. A. 109 21259Google Scholar

    [52]

    Murray B, Knopf D, Bertram A 2005 Nature 434 202Google Scholar

    [53]

    Falenty A, Kuhs W F 2009 J. Phys. Chem. B 113 15975Google Scholar

    [54]

    Baker J M, Dore J C, Behrens P 1997 J. Phys. Chem. B 101 6226Google Scholar

    [55]

    Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60Google Scholar

    [56]

    del Rosso L, Celli M, Grazzi F, Catti M, Ulivi L 2020 Nat. Mater. 19 663Google Scholar

    [57]

    Komatsu K, Machida S, Noritake F, Hattori T, Kagi H 2020 Nat. Commun. 11 464Google Scholar

    [58]

    Lekner J 1997 Physica B 240 263Google Scholar

    [59]

    黄盈盈, 苏艳, 赵纪军 2019 高压物理学报 33 010001Google Scholar

    Huang Y Y, Su Y, Zhao J J 2019 Chin. J. High Pressure Phys. 33 010001Google Scholar

    [60]

    Bartels-Rausch T, Bergeron V, Csrtwright J H E, Escribano R, Finney J L, Grothe H 2012 Rev. Mod. Phys. 84 885Google Scholar

    [61]

    Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572Google Scholar

    [62]

    Kamb B 1964 Acta Crystallogr. 17 1437Google Scholar

    [63]

    Finch E D 1968 J. Chem. Phys. 49 4361Google Scholar

    [64]

    Kamb B, Hamilton W C, Laplaca S J, Prakash A 1971 J. Chem. Phys. 55 1934Google Scholar

    [65]

    Fortes A D, Wood I G, Brodholt J P, Vočadlo L 2003 J. Chem. Phys. 119 4567Google Scholar

    [66]

    Bauer M, Elsaesser M S, Winkel K, Mayer E, Loerting T 2008 Phys. Rev. B 77 220105Google Scholar

    [67]

    Scheuermann M, Geil B, Löw F, Fujara F 2009 J. Chem. Phys. 130 024506Google Scholar

    [68]

    Bertie J E, Whalley E 1964 J. Chem. Phys. 40 1646Google Scholar

    [69]

    Bertie J E, Labbé H J, Whalley E 1968 J. Chem. Phys. 49 775Google Scholar

    [70]

    Bertie J E, Francis B F 1980 J. Chem. Phys. 72 2213Google Scholar

    [71]

    Bertie J E, Francis B F 1982 J. Chem. Phys. 77 1Google Scholar

    [72]

    Li J C, Londono D, Ross D K, Finney J L, Bennington S M, Taylor A D 1992 J. Phys. Condens. Matter 4 2109Google Scholar

    [73]

    Kamb B 1965 Science 150 205Google Scholar

    [74]

    Kuhs W F, Ahsbahs H, Londono D, Finney J L 1989 Physica B 156 684Google Scholar

    [75]

    Whale T F, Clark S J, Finney J L 2013 J. Raman Spectrosc. 44 290Google Scholar

    [76]

    Komatsu K, Noritake F, Machida S 2016 Sci. Rep. 6 28920Google Scholar

    [77]

    Nanda K D, Beran G J O 2013 J. Phys. Chem. Lett. 4 3165Google Scholar

    [78]

    Gasser T M, Thoeny A, Plaga L 2018 Chem. Sci. 9 4224Google Scholar

    [79]

    Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G 1999 Nature 398 681Google Scholar

    [80]

    Vaks V G, Zinenko V I 1981 Solid State Commun. 39 643Google Scholar

    [81]

    Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K 2003 Phys. Rev. B 68 014106Google Scholar

    [82]

    Besson J M, Kobayashi M, Nakai T, Endo S 1997 Phys. Rev. B 55 11191Google Scholar

    [83]

    Pruzan P, Chervin J C, Canny B 1993 J. Chem. Phys. 99 9842Google Scholar

    [84]

    Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K 1996 Science 273 218Google Scholar

    [85]

    Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673Google Scholar

    [86]

    Klug D D, Handa Y P, Tse J S, Whalley E 1989 J. Chem. Phys. 90 2390Google Scholar

    [87]

    Minceva-Sukarova B, Sherman W F, Wilkinson G R 1984 J. Phys. C: Solid State Phys. 17 5833Google Scholar

    [88]

    Li J C, Londono J D, Ross D K, Finney J L, Tomkinson J, Sherman W F 1991 J. Chem. Phys. 94 6770Google Scholar

    [89]

    Garg A K 1988 Phys. Status Solidi A 110 467Google Scholar

    [90]

    Tse J S, Klein M L, McDonald I R 1984 J. Chem. Phys. 81 6124Google Scholar

    [91]

    Holzapfel W B 1972 J. Chem. Phys. 56 712Google Scholar

    [92]

    Polian A, Grimsditch M 1984 Phys. Rev. Lett. 52 1312Google Scholar

    [93]

    Flores-Livas J A, Sanna A, Graužinytė M, Davydov A, Goedecker S, Marques M A L 2017 Sci. Rep. 7 6825Google Scholar

    [94]

    Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71Google Scholar

    [95]

    Marqués M, Ackland G, Loveday J 2009 High Pressure Res. 29 208Google Scholar

    [96]

    Putrino A, Parrinello M 2002 Phys. Rev. Lett. 88 176401Google Scholar

    [97]

    Goncharov A F, Struzhkin V V, Mao H K, Hemley R J 1999 Phys. Rev. Lett. 83 1998Google Scholar

    [98]

    Men Z, Fang W, Li D, Li Z, Sun C 2014 Sci. Rep. 4 4606Google Scholar

    [99]

    Giauque W F, Stout J W 1936 J. Am. Chem. Soc. 58 1144Google Scholar

    [100]

    Kawada S 1972 J. Phys. Soc. Jpn. 32 1442Google Scholar

    [101]

    Leadbetter A J, Ward R C 1985 J. Chem. Phys. 82 424Google Scholar

    [102]

    Line C M B, Whitworth R W 1996 J. Chem. Phys. 104 10008Google Scholar

    [103]

    Jackson S M, Nield V M, Whitworth R W, Oguro M, Wilson C C 1997 J. Phys. Chem. B 101 6142Google Scholar

    [104]

    Salzmann C G, Radaelli P G, Finney J L, Mayer E 2008 Phys. Chem. Chem. Phys. 10 6313Google Scholar

    [105]

    Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Phys. Chem. Chem. Phys. 8 3088Google Scholar

    [106]

    Zhang J, Xiao Z, Kuo J 2010 J. Chem. Phys. 132 184506Google Scholar

    [107]

    Tran H, Cunha A V, Shephard J J, Shalit A, Hamm P, Jansen T L C, Salzmann C G 2017 J. Chem. Phys. 147 144501Google Scholar

    [108]

    Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Chem. Phys. Lett. 429 469Google Scholar

    [109]

    Yoshimura Y, Stewart S T, Mao H K, Hemley R J 2007 J. Chem. Phys. 126 174505Google Scholar

    [110]

    Koza M M, Schober H, Tölle A, Fujara F, Hansen T 1999 Nature 397 660Google Scholar

    [111]

    Koza M M, Schober H, Parker S F, Peters J 2008 Phys. Rew. B 77 104306Google Scholar

    [112]

    Huang Y Y, Zhu C Q, Wang L, Cao X X, Su Y, Jiang X, Meng S, Zhao J J, Zeng X C 2016 Sci. Adv. 2 e1501010Google Scholar

    [113]

    Huang Y Y, Zhu C Q, Wang L, Zhao J J and Zeng X C 2017 Chem. Phys. Lett. 671 186Google Scholar

    [114]

    Matsui T, Hirata M, Yagasaki T, Matsumoto M, Tanaka H 2017 J. Chem. Phys. 147 091101Google Scholar

    [115]

    Liu Y, Ojamäe L 2018 Phys. Chem. Chem. Phys. 20 8333Google Scholar

    [116]

    Engel E A, Anelli A, Ceriotti M, Pickard C J, Needs R J 2018 Nat. Commun. 9 2173Google Scholar

    [117]

    Matsui T, Yagasaki T, Matsumoto M, Tanaka H 2019 J. Chem. Phys. 150 041102Google Scholar

    [118]

    del Rosso L, Grazzi F, Celli M, Colognesi D, Garcia-Sakai V, Ulivi L 2016 J. Phys. Chem. C 120 26955Google Scholar

    [119]

    Bertie J E, Labbe H J, Whalley E 1969 J. Chem. Phys. 50 4501Google Scholar

    [120]

    Wong P T T, Whalley E 1976 J. Chem. Phys. 65 829Google Scholar

    [121]

    Rasetti F 1932 Nuovo Cirnento 9 72Google Scholar

    [122]

    Hibben J H 1937 J. Chem. Phys. 5 166Google Scholar

    [123]

    Cross P C, Burnham J, Leighton P A 1937 J. Am. Chem. Soc. 59 1134Google Scholar

    [124]

    Narayanaswarny P K 1948 Proc. Indian Acad. Sci. 27 311Google Scholar

    [125]

    Valkov V I, Maslenkova G L 1956 Opt. Spektrosk. 1 881

    [126]

    Taylor M J, Whalley E 1964 J. Chem. Phys. 40 1660Google Scholar

    [127]

    Marchi M, Tse J S, Klein M L 1986 J. Chem. Phys. 85 2414Google Scholar

    [128]

    Renker B 1973 International Symposium on the Physics and Chemistry of Ice Ottowa, Ont., Canada, August 14–18, 1972 p82

    [129]

    Li J C, Ross D K, Howe L, Hall P G, Tomkinson J 1989 Physica B 156 376Google Scholar

    [130]

    Klug D D, Tse J S, Whalley E 1991 J. Chem. Phys. 95 7011Google Scholar

    [131]

    Li J C 1996 J. Chem. Phys. 105 6733Google Scholar

    [132]

    Li J C, Ross D K 1993 Nature 365 327Google Scholar

    [133]

    Morrison I, Jenkins S 1999 Physica B 263 442Google Scholar

    [134]

    Klotz S, Strässle T, Salzmann C G, Philippe J, Parker S F 2005 Europhys. Lett. 72 576Google Scholar

    [135]

    Zhang P, Tian L, Zhang Z P, Shao G, Li J C 2012 J. Chem. Phys. 137 044504Google Scholar

    [136]

    He X, Sode O, Xantheas S S, Hirata S 2012 J. Chem. Phys. 137 204505Google Scholar

    [137]

    Zhang P, Liu Y, Yu H, Han S H, Lü Y B, Lv M S, Cong W Y 2014 Chin. Phys. B 23 026103Google Scholar

    [138]

    Zhang P, Wang Z, Lü Y B, Ding Z W 2016 Sci. Rep. 6 29273Google Scholar

    [139]

    Yuan Z Y, Zhang P, Yao S K, Lü Y B, Yang H Z, Luo H W, Zhao Z J 2017 RSC Adv. 7 36801Google Scholar

    [140]

    Yao S K, Zhang P, Zhang Y, Lü Y B, Yang T l, Sun B G, Yuan Z Y, Luo H W 2017 RSC Adv. 7 31789Google Scholar

    [141]

    Jiang L, Yao S K, Zhang K, Wang Z R, Luo H W, Zhu X L, Gu Y, Zhang P 2018 Molecules 23 2780Google Scholar

    [142]

    Qin X L, Zhu X L, Cao J W, Jiang L, Gu Y, Wang X C, Zhang P 2019 Molecules 24 3115Google Scholar

    [143]

    Zhao Z J, Qin X L, Cao J W, Zhu X L, Yang Y C, Wang H C, Zhang P 2019 ACS Omega 4 18936Google Scholar

    [144]

    Cao J W, Chen J Y, Qin X L, Zhu X L, Jiang L, Gu Y, Yu X H, Zhang P 2019 Molecules 24 3135Google Scholar

    [145]

    Zhang K, Zhang P, Wang Z R, Zhu X L, Lu Y B, Guan C B, Li Y H 2018 Molecules 23 1781Google Scholar

    [146]

    Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C 123 14880Google Scholar

    [147]

    Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Liu Y, Kolesnikov A I, Zhang P 2020 J. Phys. Chem. C 124 1165Google Scholar

    [148]

    Wei Z W, Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Zhang P 2019 AIP Adv. 9 115118Google Scholar

    [149]

    Zhu X L, Yuan Z Y, Jiang L, Zhang K, Wang Z R, Luo H W, Gu Y, Cao J W, Qin X L, Zhang P 2019 New J. Phys. 21 043054Google Scholar

    [150]

    Wang Z R, Zhu X L, Jiang L, Zhang K, Luo H W, Gu Y, Zhang P 2019 Materials 12 246Google Scholar

    [151]

    Matsumoto M, Yagasaki T, Tanaka H 2018 J. Comput. Chem. 39 61Google Scholar

    [152]

    Wang H C, Zhu X L, Cao J W, Qin X L, Yang Y C, Niu T X, LüY B, Zhang P 2020 New J. Phys. 22 093066Google Scholar

    [153]

    Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413Google Scholar

    [154]

    Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515Google Scholar

    [155]

    Li J C, Burnham C, Kolesnikov A I, Eccleston R S 1999 Phys. Rev. B 59 9088Google Scholar

    [156]

    Kolesnikov A I, Li J C, Ross D K, et al. 1992 Phys. Lett. A 168 308Google Scholar

  • [1] Duan Tong-Chuan, Yan Shao-Jian, Zhao Yan, Sun Ting-Yu, Li Yang-Mei, Zhu Zhi. Relationship between hydrogen bond network dynamics of water and its terahertz spectrum. Acta Physica Sinica, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [2] Li Yuan-Yuan, Hu Zhu-Bin, Sun Hai-Tao, Sun Zhen-Rong. Density functional theory studies on the excited-state properties of Bilirubin molecule. Acta Physica Sinica, 2020, 69(16): 163101. doi: 10.7498/aps.69.20200518
    [3] Luo Qiang, Yang Heng, Guo Ping, Zhao Jian-Fei. Density functional theory calculation of structure and electronic properties in N-methane hydrate. Acta Physica Sinica, 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [4] Zhang Chen-Jun, Wang Yang-Li, Chen Chao-Kang. Density functional theory of InCn+(n=110) clusters. Acta Physica Sinica, 2018, 67(11): 113101. doi: 10.7498/aps.67.20172662
    [5] Yan Wei, Ma Miao, Dai Ze-Lin, Gu Yu, Zhu Hong-Zhao, Liu Yu-Tong, Xu Xiang-Dong, Han Shou-Sheng, Peng Yong. Experimental and theoretical study on terahertz spectra of all-trans -carotene. Acta Physica Sinica, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [6] Wang Ya-Jing, Li Gui-Xia, Wang Zhi-Hua, Gong Li-Ji, Wang Xiu-Fang. Diameter monodispersity of imogolite-like nanotube: a density functional theory study. Acta Physica Sinica, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [7] Wen Jun-Qing, Zhang Jian-Min, Yao Pan, Zhou Hong, Wang Jun-Fei. A density functional theory study of small bimetallic PdnAl (n =18) clusters. Acta Physica Sinica, 2014, 63(11): 113101. doi: 10.7498/aps.63.113101
    [8] Wen Jun-Qing, Xia Tao, Wang Jun-Fei. A density functional theory study of small bimetallic PtnAl (n=18) clusters. Acta Physica Sinica, 2014, 63(2): 023103. doi: 10.7498/aps.63.023103
    [9] Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei. Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules. Acta Physica Sinica, 2014, 63(20): 205204. doi: 10.7498/aps.63.205204
    [10] Zhang Ji, Wang Di, Zhang De-Ming, Zhang Qing-Li, Wan Song-Ming, Sun Dun-Lu, Yin Shao-Tang. Vibrational spectra and first principles calculation of BaBPO5 crystal. Acta Physica Sinica, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [11] Xie Xiao-Dong, Hao Yu-Ying, Zhang Ri-Guang, Wang Bao-Jun. Lithium-doped tris (8-hydroxyquinoline) aluminum studied by density functional theory. Acta Physica Sinica, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [12] Yang Yue-Bin, Zuo Wen-Long, Bao Yan-Xiang, Liu Shu-Yu, Li Long-Fei, Zhang Jin-Xiu, Xiong Xiao-Min. Detection of a coupled vibration by mechanical resonant absorption spectra. Acta Physica Sinica, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [13] Jin Rong, Chen Xiao-Hong. Structure and properties of ZrnPd clusters by density-functional theory. Acta Physica Sinica, 2010, 59(10): 6955-6962. doi: 10.7498/aps.59.6955
    [14] Zhao La-La, Liu Chu-Sheng, Yan Jun-Xia, Jiang Xiao-Wei, Zhu Yan. Numerical simulation of particle segregation behavior in different vibration modes. Acta Physica Sinica, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [15] Yang Pei-Fang, Hu Juan-Mei, Teng Bo-Tao, Wu Feng-Min, Jiang Shi-Yu. Density functional theory study of rhodium adsorption on single-wall carbon nanotubes. Acta Physica Sinica, 2009, 58(5): 3331-3337. doi: 10.7498/aps.58.3331
    [16] Chen Yu-Hong, Zhang Cai-Rong, Ma Jun. Density functional theory study on the structure and properties of MgmBn(m=1,2;n=1—4) clusters. Acta Physica Sinica, 2006, 55(1): 171-178. doi: 10.7498/aps.55.171
    [17] Zeng Zhen-Hua, Deng Hui-Qiu, Li Wei-Xue, Hu Wang-Yu. Density function theory calculation of oxygen adsorption on Au(111) surface. Acta Physica Sinica, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [18] Ye Zhen-Cheng, Cai Jun, Zhang Shu-Ling, Liu Hong-Lai, Hu Ying. Studies on the density profiles of square-well chain fluid confined in a slit pore by density functional theory. Acta Physica Sinica, 2005, 54(9): 4044-4052. doi: 10.7498/aps.54.4044
    [19] Zhang Hui-Peng, Jin Qing-Hua, Wang Yu-Fang, Li Bao-Hui, Ding Da-Tong. Effect of single-wall carbon nanotubes’chiral angle for the phonon frequency. Acta Physica Sinica, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
    [20] Zhao Ming-Wen, Xia Yue-Yuan, Ma Yu-Chen, Liu Xiang-Dong, Ying Min-Ju. . Acta Physica Sinica, 2002, 51(11): 2440-2445. doi: 10.7498/aps.51.2440
Metrics
  • Abstract views:  6422
  • PDF Downloads:  184
  • Cited By: 0
Publishing process
  • Received Date:  04 January 2021
  • Accepted Date:  26 February 2021
  • Available Online:  14 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回