Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research progress of critical behaviors and magnetocaloric effects of perovskite manganites

Zhang Peng Piao Hong-Guang Zhang Ying-De Huang Jiao-Hong

Citation:

Research progress of critical behaviors and magnetocaloric effects of perovskite manganites

Zhang Peng, Piao Hong-Guang, Zhang Ying-De, Huang Jiao-Hong
PDF
HTML
Get Citation
  • Hole-doped perovskite-type manganites have received intensive attention due to their intriguing physical phenomena such as giant magnetocaloric effect and magnetic-phase transitions. However, the mechanism of internal ferromagnetic interaction still needs to be further explored due to the complex natures of competing double-exchange (DE) and super-exchange (SE) interaction, Jahn-Teller (JT) polaron localization, charge ordering, and phase separation scenarios. Critical exponent analysis near magnetic phase transition is a powerful tool to investigate the details of the ferromagnetic interactions and has been used frequently in various magnetocaloric materials. In this article, the critical behavior analyses of perovskite manganites in recent years are comprehensively reviewed. A large number of studies have shown that even in single-phase materials with uniform structure and composition, the critical behavior can be affected by multiple factors such as grain boundary density and the degree of disorder, making them difficult to fully describe the intrinsic ferromagnetism. In this review, firstly, the critical behaviors of typical manganites with different bandwidths in single crystal and polycrystalline are discussed. In a double-exchange dominated system such as La-Sr-Mn-O, short-range 3D-Heisenberg model is basically in good accordance with optimally-doped single crystal sample. However, it would be replaced by long-range mean-field critical behavior in polycrystalline sample when the correlation length exceeds the crystallite size. In a typical intermediate bandwidth system such as La-Ca-Mn-O exhibiting a complex phase diagram described by competing SE/DE interactions, JT polaron localization/delocalization, and Griffith phase disorder, the critical exponent can vary from 3D-Heisenberg model to tricritical mean-field model, for the crossover from first to second order phase transition. Secondly, the studies of elements doping and different fabrication methods indicate that the critical behavior of manganites can be effectively modulated, and vary between different theoretical models including even nonuniversal exponent for highly disordered magnetic system. In the following part, the influence of magnetic field on the critical behavior and field induced crossover phenomena of La-Ca-Mn-O system near tricritical point is analyzed and discussed in detail. Furthermore, the magnetocaloric effects of materials near the tricritical point collected in many studies are listed and compared with each other. Excellent magnetocaloric properties with high magnetic entropy change and relative cooling power in plenty of researches indicate that ideal magnetocaloric material would be very likely to be found in the materials near the tricritical point, which lay at the borderline between first-order and second-order phase transition. Consequently, it is suggested that perovskite manganites are still quite promising in the potential magnetic refrigeration applications, and need to be further developed.
      Corresponding author: Piao Hong-Guang, hgpiao@ctgu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hubei Province, China (Grant No. ZRMS2018001866), the Doctoral Research Startup Fund of Hubei University of Technology, China (Grant No. BSQD13030), and the National Key R&D Program of China (Grant No. 2017YFB0903702)
    [1]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [2]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [3]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150Google Scholar

    [4]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar

    [5]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460Google Scholar

    [6]

    Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P, Feng D 1997 Phys. Rev. Lett. 78 1142Google Scholar

    [7]

    Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325Google Scholar

    [8]

    Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P, Gutfleisch O 2018 Nat. Commun. 9 2680Google Scholar

    [9]

    Fujita A, Fujieda S, Hasegawa Y, Fukamichi K 2003 Phys. Rev. B 67 104416Google Scholar

    [10]

    Sun Y, Arnold Z, Kamarad J, Wang G J, Shen B G, Cheng Z H 2006 Appl. Phys. Lett. 89 172513Google Scholar

    [11]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [12]

    Romero-Muñiz C, Tamura R, Tanaka S, Franco V 2016 Phys. Rev. B 94 134401Google Scholar

    [13]

    Franco V, Law J Y, Conde A, Brabander V, Karpenkov D Y, Radulov I, Skokov K, Gutfleisch O 2017 J. Phys. D 50 414004Google Scholar

    [14]

    Romero-Muñiz C, Franco V, Conde A 2017 Phys. Chem. Chem. Phys. 19 3582Google Scholar

    [15]

    Dagotto E, Hotta T, Moreo A 2001 Phys. Rep. 344 1Google Scholar

    [16]

    Alexandrov A S, Bratkovsky A M 1999 Phys. Rev. Lett. 82 141Google Scholar

    [17]

    Yunoki S, Hu J, Malvezzi A L, Moreo A, Furukawa N, Dagotto E 1998 Phys. Rev. Lett. 80 845Google Scholar

    [18]

    Banerjee B K 1964 Phys. Lett. 12 16Google Scholar

    [19]

    Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512Google Scholar

    [20]

    Bonilla C M, Herrero-Albillos J, Bartolomé F, García L M, Parra-Borderías M, Franco V 2010 Phys. Rev. B 81 224424Google Scholar

    [21]

    张蕾 2018 物理学报 67 137501Google Scholar

    Zhang L 2018 Acta Phys. Sin. 67 137501Google Scholar

    [22]

    Fan J, Pi L, Zhang L, Tong W, Ling L, Hong B, Shi Y, Zhang W, Lu D, Zhang Y 2011 Appl. Phys. Lett. 98 072508Google Scholar

    [23]

    Huang K 1987 Statistical Mechanics (2nd Ed.) (New York: Wiley) pp398–432

    [24]

    Kaul S N 1985 J. Magn. Magn. Mater. 53 5Google Scholar

    [25]

    Fisher M E, Ma S K, Nickel B G 1972 Phys. Rev. Lett. 29 917Google Scholar

    [26]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2008 Phys. Rev. B 77 064424Google Scholar

    [27]

    Linh D C, Thanh T D, Anh L H, Dao V D, Piao H G, Yu S C 2017 J. Alloys Compd. 725 484Google Scholar

    [28]

    Moutis N, Panagiotopoulos I, Pissas M, Niarchos D 1999 Phys. Rev. B 59 1129Google Scholar

    [29]

    Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A, Mukovskii Y 1998 Phys. Rev. Lett. 81 4740Google Scholar

    [30]

    Kim D, Zink B L, Hellman F, Coey J M D 2002 Phys. Rev. B 65 214424Google Scholar

    [31]

    Mohan C V, Seeger M, Kronmüller H, Murugaraj P, Maier J 1998 J. Magn. Magn. Mater. 183 348Google Scholar

    [32]

    Nair S, Banerjee A, Narlikar A V, Prabhakaran D, Boothroyd A T 2003 Phys. Rev. B 68 132404Google Scholar

    [33]

    Kim D, Revaz B, Zink B L, Hellman F, Rhyne J J, Mitchell J F 2002 Phys. Rev. Lett. 89 227202Google Scholar

    [34]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2007 Phys. Rev. Lett. 99 177203Google Scholar

    [35]

    Jiang W, Zhou X, Williams G, Privezentsev R, Mukovskii Y 2009 Phys. Rev. B 79 214433Google Scholar

    [36]

    Oleaga A, Salazar A, Hatnean M C, Balakrishnan G 2015 Phys. Rev. B 92 024409Google Scholar

    [37]

    Venkatesh R, Pattabiraman M, Sethupathi K, Rangarajan G, Angappane S, Park J G 2008 J. Appl. Phys. 103 07B319Google Scholar

    [38]

    Phan T L, Ho T A, Thang P D, Tran Q T, Thanh T D, Phuc N X, Phan M H, Huy B T, Yu S C 2014 J. Alloys Compd. 615 937Google Scholar

    [39]

    Rößler S, Nair H S, Rößler U K, Kumar C M N, Elizabeth S, Wirth S 2011 Phys. Rev. B 84 184422Google Scholar

    [40]

    Elleuch F, Bekri M, Hussein M, Triki M, Dhahri E, Hlil E K, Bessais L 2015 Dalton Trans. 44 17712Google Scholar

    [41]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2008 Phys. Rev. B 78 144409Google Scholar

    [42]

    Ho T A, Thanh T D, Yu Y, Tartakovsky D M, Ho T O, Thang P D, Le A T, Phan T L, Yu S C 2015 J. Appl. Phys. 117 17D122Google Scholar

    [43]

    Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Hlil E K, Cheikhrouhou A 2017 J. Mater. Sci. Mater. Electron. 28 6837Google Scholar

    [44]

    Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, Yu S C 2010 J. Alloys Compd. 508 238Google Scholar

    [45]

    Debbebi I S, Ezaami A, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil E K 2017 J. Mater. Sci. Mater. Electron. 28 14000Google Scholar

    [46]

    Lam D S, Dung N T, Thanh T D, Linh D C, Nan W Z, Yu S C 2020 Mater. Res. Express 7 046101Google Scholar

    [47]

    Elghoul A, Krichene A, Boudjada N C, Boujelben W 2018 Ceram. Int. 44 14510Google Scholar

    [48]

    Fan J, Ling L, Hong B, Zhang L, Pi L, Zhang Y 2010 Phys. Rev. B 81 144426Google Scholar

    [49]

    Mleiki A, Othmani S, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil E K 2015 J. Alloys Compd. 648 1043Google Scholar

    [50]

    Mnefgui S, Dhahri A, Dhahri N, Hlil E K, Dhahri J 2013 Solid State Sci. 21 19Google Scholar

    [51]

    Oumezzine M, Peña O, Kallel S, Zemni S 2011 Solid State Sci. 13 1829Google Scholar

    [52]

    Baazaoui M, Hcini S, Boudard M, Zemni S, Oumezzine M 2015 J. Supercond. Nov. Magn. 28 1887Google Scholar

    [53]

    Ho T A, Phan M H, Phuc N X, Lam V D, Phan T L, Yu S C 2016 J. Electron. Mater. 45 2508Google Scholar

    [54]

    Ghodhbane S, Dhahri A, Dhahri N, Hlil E K, Dhahri J, Alhabradi M, Zaidi M 2013 J. Alloys Compd. 580 558Google Scholar

    [55]

    Wang G F, Zhao Z R, Li H L, Zhang X F 2016 Ceram. Int. 42 18196Google Scholar

    [56]

    Khiem N V, Phong P T, Bau L V, Nam D N H, Hong L V, Phuc N X 2009 J. Magn. Magn. Mater. 321 2027Google Scholar

    [57]

    Thanh T D, Linh D C, Manh T V, Ho T A, Phan T L, Yu S C 2015 J. Appl. Phys. 117 17C101Google Scholar

    [58]

    Ginting D, Nanto D, Zhang Y D, Yu S C, Phan T L 2013 Physica B 412 17Google Scholar

    [59]

    Phong P T, Ngan L T T, Bau, L V, Nam P H, Linh P H, Dang N V, Lee I J 2017 Ceram. Int. 43 16859Google Scholar

    [60]

    Nisha P, Pillai S S, Varma M R, Suresh K G 2012 Solid State Sci. 14 40Google Scholar

    [61]

    Rößler S, Rößler U K, Nenkov K, Eckert D, Yusuf S M, Dörr K, Müller K H 2004 Phys. Rev. B 70 104417Google Scholar

    [62]

    Zhu X, Sun Y, Luo X, Lei H, Wang B, Song W, Yang Z, Dai J, Shi D, Dou S 2010 J. Magn. Magn. Mater. 322 242Google Scholar

    [63]

    Phan T L, Tran Q T, Thanh P Q, Yen P D H, Thanh T D, Yu S C 2014 Solid State Commun. 184 40Google Scholar

    [64]

    Phan T L, Thanh P Q, Sinh N H, Zhang Y D, Yu S C 2012 IEEE Trans. Magn. 48 1293Google Scholar

    [65]

    Phan T L, Thanh P Q, Sinh N H, Lee K W, Yu S C 2011 Curr. Appl. Phys. 11 830Google Scholar

    [66]

    Turki D, Ghouri Z K, Al-Meer S, Elsaid K, Ahmad M I, Easa A, Remenyi G, Mahmood S, Hlil E K, Ellouze M, Elhalouani F 2017 Magnetochemistry 3 28Google Scholar

    [67]

    Arun B, Suneesh, Sudakshina B, Akshay V R. Chandrasekhar K D, Vasundhara M 2018 J. Phys. Chem. Solids 123 327Google Scholar

    [68]

    Dhahr J, Belgacem C H, Dhahri A, Oumezzine M 2016 Appl. Phys. A 122 483Google Scholar

    [69]

    Raoufi T, Ehsani M H, Khoshnoud D S 2017 Ceram. Int. 43 5204Google Scholar

    [70]

    Mnefgui S, Zaidi N, Dhahri A, Hlil E K, Dhahri J 2014 J. Solid State Chem. 215 193Google Scholar

    [71]

    Munazat D R, Kurniawan B, Razaq D S, Watanabe K, Tanaka H 2020 Physica B 592 412227Google Scholar

    [72]

    Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil E K 2017 J. Phys. Chem. Solids 109 109Google Scholar

    [73]

    Thanh T D, Phan T L, Chien N V, Manh D H, Yu S C 2014 IEEE Trans. Magn. 50 2501504Google Scholar

    [74]

    Ezaami A, Sfifir I, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A 2017 J. Alloys Compd. 693 658Google Scholar

    [75]

    Ho T A, Thanh T D, Manh T V, Ho T O, Thang P D, Phan T L, Yu S C 2015 Mater. Trans. 56 1331Google Scholar

    [76]

    Makni-Chakroun J, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A 2015 J. Alloys Compd. 650 421Google Scholar

    [77]

    Phong P T, Ngan L T T, Dang N V, Nguyen L H, Nam P H, Thuy D M, Tuan N D, Bau L V, Lee I J 2018 J. Magn. Magn. Mater. 449 558Google Scholar

    [78]

    Phong P T, Ngan L T T, Bau L V, Phuc N X, Nam P H, Phong L T H, Dang N V, Lee I J 2019 J. Magn. Magn. Mater. 475 374Google Scholar

    [79]

    Messaoui I, Omrani H, Mansouri M, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil E K 2016 Ceram. Int. 42 17032Google Scholar

    [80]

    Mahjoub S, Baazaoui M, Hlil E K, Oumezzine M 2015 Ceram. Int. 41 12407Google Scholar

    [81]

    Kharrat A B J, Hlil E K, Boujelben W 2018 J. Alloys Compd. 739 101Google Scholar

    [82]

    Kharrat A B J, Boujelben W 2019 J. Low Temp. Phys. 197 357Google Scholar

    [83]

    Zhang P, Lampen P, Phan T L, Yu S C, Thanh T D, Dan N H, Lam V D, Srikanth H, Phan M H 2013 J. Magn. Magn. Mater. 348 146Google Scholar

    [84]

    Phan T L, Dang N T, Ho T A, Manh T V, Thanh T D, Jung C U, Lee B W, Le A T, Phan A D, Yu S C 2016 J. Alloys Compd. 657 818Google Scholar

    [85]

    Phan T L, Tola P S, Dang N T, Rhyee J S, Shon W H, Ho T A 2017 J. Magn. Magn. Mater. 441 290Google Scholar

    [86]

    Ghorai S, Skini R, Hedlund D, Ström P, Svedlindh P 2020 Sci. Rep. 10 19485Google Scholar

    [87]

    Zaidi M A, Dhahri J, Zeydi I, Alharbi T, Belmabrouk H 2017 RSC Adv. 7 43590Google Scholar

    [88]

    Assoudi N, Walha I, Nouri K, Dhahri E, Bessais L 2018 J. Alloys Compd. 753 282Google Scholar

    [89]

    Jeddi M, Gharsallah H, Bejar M, Bekri M, Dhahri E, Hlil E K 2018 RSC Adv. 8 9430Google Scholar

    [90]

    Phan T L, Zhang Y D, Zhang P, Thanh T D, Yu S C 2012 J. Appl. Phys. 112 093906Google Scholar

    [91]

    Ho T A, Dang N T, Phan T L, Yang D S, Lee B W, Yu S C 2016 J. Alloys Compd. 676 305Google Scholar

    [92]

    Laouyenne M R, Baazaoui M R, Farah K, Hlil E K, Oumezzine M 2019 J. Magn. Magn. Mater. 474 393Google Scholar

    [93]

    Dhahri A, Dhahri E, Hlil E K 2017 J. Alloys Compd. 727 449Google Scholar

    [94]

    Belkahla A, Cherif K, Dhahri J, Hlil E K 2017 J. Alloys Compd. 715 266Google Scholar

  • 图 1  理想钙钛矿ABO3立方结构示意图

    Figure 1.  Ideal perovskite ABO3 cubic structure.

    图 2  不同带宽钙钛矿锰氧化物的典型磁相图 (a)大带宽型La1–xSrxMnO3; (b)中等带宽型La1–xCaxMnO3; (c)小带宽型Pr1–xCaxMnO3[15]

    Figure 2.  Typical magnetic phase diagrams of different bandwidth manganites: (a) Large bandwidth La1–xSrxMnO3; (b) intermediate bandwidth La1–xCaxMnO3; (c) small bandwidth Pr1–xCaxMnO3[15].

    图 3  三重临界点的示意图

    Figure 3.  Schematic diagram of Tricritical point.

    表 1  典型理论模型的临界参数

    Table 1.  Critical parameters of theoretical models.

    ModelβγδRef.
    Mean-field0.51.03.0[23]
    Tricritical-Mean-field0.251.05.0[23]
    3D-Heisenberg0.3651.3864.80[24]
    3D-Ising0.3251.2414.82[24]
    DownLoad: CSV

    表 2  典型锰氧化物材料在各种形态下的临界行为分析

    Table 2.  Critical behavior analysis of manganites in different morphologies (SC, single crystal; PC, polycrystalline).

    MaterialTechniqueβγδModelRef.
    La0.7Ba0.3MnO3SCMAP0.351.415.53D-Heisenberg[26]
    La0.7Ba0.3MnO3PCMAP0.4931.0593.15Mean-field[27]
    La0.67Ba0.33MnO3PCMAP0.4641.293.78Mean-field/3D-Heisenberg[28]
    La0.7Sr0.3MnO3SCMAP0.371.224.25close to 3D-Heisenberg[29]
    La0.75Sr0.25MnO3SCMAP0.41.274.12Mean-field/3D-Ising[30]
    La0.8Sr0.2MnO3PCMAP0.51.083.13Mean-field[31]
    La0.875Sr0.125MnO3SCMAP0.371.384.723D-Heisenberg[32]
    La0.6Ca0.4MnO3PCMAP0.251.035Tricritical-Mean-field[33]
    La0.79Ca0.21MnO3SCMAP0.091.7120nonuniversal[34]
    La0.8Ca0.2MnO3SCMAP0.3741.3824.7793D-Heisenberg[35]
    La0.82Ca0.18MnO3SCMAP0.3741.3794.7833D-Heisenberg[35]
    Nd0.6Sr0.4MnO3SCKF0.3081.1724.753D-Ising[36]
    Nd0.6Sr0.4MnO3PCMAP0.511.013.13Mean-field[37]
    Nd0.67Sr0.33MnO3PCMAP0.231.055.13Tricritical-Mean-field[37]
    Nd0.7Sr0.3MnO3PCMAP0.2710.9224.4Tricritical-Mean-field[38]
    Pr0.6Sr0.4MnO3SCKF0.3121.1064.5453D-Ising[36]
    Pr0.6Sr0.4MnO3SCMAP0.3651.3094.6483D-Heisenberg[39]
    Pr0.6Sr0.4MnO3PCMAP0.2760.9184.325Tricritical-Mean-field[40]
    KF0.2731.0014.325
    Pr0.71Ca0.29MnO3SCMAP0.371.384.623D-Heisenberg[41]
    Pr0.71Ca0.29MnO3PCMAP0.5210.9122.71Mean-field[42]
    Pr0.73Ca0.27MnO3SCMAP0.361.364.813D-Heisenberg[41]
    Pr0.73Ca0.27MnO3PCMAP0.3621.1324.093D-Heisenberg[42]
    注: SC表示单晶; PC表示多晶.
    DownLoad: CSV

    表 3  A位掺杂不同元素或空位的锰氧化物临界行为分析

    Table 3.  Critical behavior analysis of manganites doped with different elements (vacancy) at A site (□, Ion vacancy).

    MaterialTechniqueβγδModelRef.
    La0.67(Ca0.5Ba0.5)0.33MnO3MAP0.4021.1103.761Mean-field/3D-Heisenberg[28]
    La0.7Ca0.15Ba0.15MnO3MAP0.4381.0323.360Mean-field[27]
    La0.7Ca0.2Ba0.1MnO3MAP0.2840.9094.200Tricritical-Mean-field/3D-Ising[43]
    KF0.2970.9254.110
    La0.7Ca0.15Sr0.15MnO3MAP0.4911.0543.150Mean-field[27]
    La0.7Ca0.1Sr0.2MnO3KF0.3601.2204.4003D-Heisenberg[44]
    La0.7Ca0.2Sr0.1MnO3KF0.2601.0605.100Tricritical-Mean-field[44]
    La0.69Dy0.01Ca0.3MnO3MAP0.2300.9205.000Tricritical-Mean-field[45]
    KF0.2500.8704.480
    La0.7Ca0.28Sn0.02MnO3KF0.2180.8584.936Tricritical-Mean-field[46]
    La0.7Ca0.26Sn0.04MnO3KF0.4671.0953.345Mean-field[46]
    La0.75Dy0.05Sr0.2MnO3MAP0.2660.9204.460Tricritical-Mean-field[47]
    KF0.2720.9314.420
    La0.1Nd0.6Sr0.3MnO3MAP0.2481.0665.170Tricritical-Mean-field[48]
    KF0.2571.1205.170
    Pr0.4Sm0.15Sr0.45MnO3KF0.3241.2124.8123D-Ising[49]
    Pr0.3Sm0.25Sr0.45MnO3KF0.2550.9575.105Tricritical-Mean-field[49]
    La0.57Nd0.1Sr0.33MnO3MAP0.3561.1524.2353D-Heisenberg[50]
    KF0.3681.1914.236
    La0.57Nd0.1Sr0.280.05MnO3MAP0.3121.1734.7603D-Ising[50]
    KF0.3261.1834.619
    Pr0.6Sr0.4MnO3MAP0.2760.9184.325Tricritical-Mean-field[40]
    KF0.2731.0014.325
    Pr0.6Sr0.30.1MnO3MAP0.2530.9874.890Tricritical-Mean-field[40]
    KF0.2420.9454.890
    Pr0.50.1Sr0.4MnO3MAP0.3231.1134.4463D-Ising[40]
    KF0.3251.0924.446
    注: □表示离子空位.
    DownLoad: CSV

    表 4  B位掺杂不同元素的锰氧化物临界行为分析

    Table 4.  Critical behavior analysis of manganites doped with different elements at B site.

    MaterialTechniqueβγ δModelRef.
    La0.67Ba0.33Mn0.98Ti0.02O3MAP0.5371.0152.890Mean-field[51]
    KF0.5511.0202.851
    La0.67Ba0.33Mn0.95Fe0.05O3KF0.5041.0133.040Mean-field[52]
    La0.7Ba0.3Mn0.95Ti0.05O3MAP0.3741.2284.2603D-Heisenberg[53]
    La0.7Ba0.3Mn0.9Ti0.1O3MAP0.3391.3074.7803D-Ising[53]
    La0.8Ba0.2Mn0.8Fe0.2O3MAP0.3651.2274.3623D-Heisenberg[54]
    KF0.3181.1594.645
    La0.67Sr0.33Mn0.9Fe0.1O3MAP0.4501.2403.740Mean-field/3D-Heisenberg[55]
    KF0.5381.3303.470
    La0.7Sr0.3Mn0.95Al0.05O3KF0.4581.0013.185Mean-field[56]
    La0.7Sr0.3Mn0.95Ti0.05O3KF0.3441.1494.340Mean-field/3D-Heisenberg[56]
    La0.7Sr0.3Mn0.9Co0.1O3KF0.4571.1143.440Mean-field/3D-Heisenberg[57]
    La0.7Sr0.3Mn0.99Ni0.01O3MAP0.3941.0923.990Mean-field/3D-Heisenberg[58]
    La0.7Sr0.3Mn0.98Ni0.02O3MAP0.4001.0823.790Mean-field/3D-Heisenberg[58]
    La0.7Sr0.3Mn0.97Ni0.03O3MAP0.4681.0102.670Mean-field[58]
    La0.7Sr0.3Mn0.98Cu0.02O3KF0.4641.1623.546close to Mean-field[59]
    La0.7Sr0.3Mn0.96Cu0.04O3KF0.4491.2023.681close to Mean-field[59]
    La0.67Ca0.33Mn0.9Cr0.1O3MAP0.5551.1702.710Mean-field[60]
    La0.67Ca0.33Mn0.75Cr0.25O3MAP0.6801.0902.936close to Mean-field[60]
    La0.67Ca0.33Mn0.9Ga0.1O3MAP0.3801.3654.5903D-Heisenberg[61]
    KF0.3871.3624.520
    La0.7Ca0.3Mn0.95Ti0.05O3KF0.6011.1712.950Mean-field[62]
    La0.7Ca0.3Mn0.9Ti0.1O3KF0.3891.4034.4003D-Heisenberg[62]
    La0.7Ca0.3Mn0.91Ni0.09O3MAP0.1710.9766.700Tricritical-Mean-field[63]
    La0.7Ca0.3Mn0.88Ni0.12O3MAP0.2620.9784.700Tricritical-Mean-field[63]
    La0.7Ca0.3Mn0.85Ni0.15O3MAP0.3200.9904.1003D-Ising[63]
    La0.7Ca0.3Mn0.95Cu0.05O3MAP0.4901.0403.120Mean-field[64]
    La0.7Ca0.3Mn0.9Zn0.1O3MAP0.4741.1523.430Mean-field[65]
    La0.8Ca0.2Mn0.9Co0.1O3MAP0.2041.96911.983nonuniversal[66]
    KF0.1231.35111.983
    La0.8Ca0.2Mn0.8Co0.2O3MAP0.4011.3324.3213D-Heisenberg[66]
    KF0.4181.3034.321
    Nd0.67Sr0.33Mn0.9Cr0.1O3MAP0.3370.7843.326nonuniversal[67]
    Nd0.67Sr0.33Mn0.9Fe0.1O3MAP0.4360.943.156Mean-field[67]
    Nd0.67Sr0.33Mn0.9Co0.1O3MAP0.4310.9293.155Mean-field[67]
    Pr0.67Sr0.33Mn0.95Al0.05O3MAP0.3811.3234.6353D-Heisenberg[68]
    KF0.3811.3204.635
    Pr0.67Sr0.33Mn0.9Al0.1O3MAP0.3741.3334.6673D-Heisenberg[68]
    KF0.3771.3314.667
    DownLoad: CSV

    表 5  不同制备方法锰氧化物的临界行为对比分析

    Table 5.  Critical behavior analysis of manganites from different preparation methods (SS, solid state reaction; SG, sol-gel; WM, wet mixing; BM, ball milling).

    MaterialTechniqueβγδModelRef.
    La0.6Sr0.4MnO3SG/800 ºCKF0.5601.1403.035close to Mean-field[69]
    La0.6Sr0.4MnO3SG/1100 ºCKF0.4801.0523.190Mean-field[69]
    La0.6Sr0.4MnO3SSKF0.5301.1103.094Mean-field[69]
    La0.67Sr0.33MnO3SSMAP0.3331.3254.9783D-Heisenberg[70]
    La0.67Sr0.33MnO3SGMAP0.5001.1503.290Mean-field[55]
    KF0.4791.2603.630
    La0.7Ba0.1Ca0.1Sr0.1MnO3WMMAP0.4481.1483.563Mean-field[71]
    KF0.4761.0293.096
    La0.7Ba0.1Ca0.1Sr0.1MnO3SGMAP0.2351.1535.906Tricritical-Mean-field[71]
    KF0.2621.1655.447
    La0.7Ca0.2Ba0.1MnO3BMMAP0.2650.8674.271Tricritical-Mean-field[72]
    KF0.2610.9884.386
    La0.7Ca0.2Ba0.1MnO3SSMAP0.2840.9094.200Tricritical-Mean-field/3D-Ising[43]
    KF0.2970.9254.110
    La0.7Ca0.2Sr0.1MnO3BMMAP0.3970.9663.4303D-Heisenberg[73]
    La0.7Ca0.2Sr0.1MnO3SSMAP0.2760.9664.500Tricritical-Mean-field[74]
    KF0.3150.9544.028
    La0.7Ca0.2Sr0.1MnO3SGMAP0.4841.0373.143Mean-field[74]
    KF0.4691.0133.160
    La0.7Ca0.3MnO3BM/40 nmMAP0.4851.0513.100Mean-field[75]
    La0.7Ca0.3MnO3BM/16 nmMAP0.6210.8252.200nonuniversal
    La0.7Ca0.3MnO3SGMAP0.2401.0103.090Tricritical-Mean-field[76]
    La0.75Ca0.25MnO3SGMAP0.5210.942.804Mean-field[77]
    KF0.5290.9392.775
    La0.8Ca0.2MnO3SGMAP0.5051.0043.060Mean-field[78]
    KF0.4991.0073.060
    Nd0.7Ca0.15Sr0.15MnO3BM/4 hKF0.2430.9074.540Tricritical-Mean-field[79]
    Nd0.7Ca0.15Sr0.15MnO3BM/24 hKF0.3111.1004.1303D-Ising[79]
    Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3SSMAP0.6441.0752.763Mean-field[80]
    KF0.6221.0972.763
    Pr0.6Ca0.1Sr0.3Mn0.975Fe0.025O3SGMAP0.3571.2924.2903D-Heisenberg[80]
    KF0.3701.2204.290
    Pr0.8Sr0.2MnO3SGMAP0.2600.9784.760Tricritical-Mean-field[81]
    KF0.2600.9934.810
    Pr0.8Sr0.2MnO3SSMAP0.3181.2604.9603D-Ising[82]
    KF0.3261.2464.960
    注: SS表示固相反应法; SG表示溶胶凝胶法(附烧结温度工艺条件); WM表示湿混法; BM表示球磨法(附平均粒径尺寸或球磨时间等工艺条件).
    DownLoad: CSV

    表 6  关于不同磁场强度范围所得磁相变临界参数的对比分析

    Table 6.  Comparative analysis of critical parameters in different magnetic field ranges.

    MaterialField rangeTechniqueβγδModelRef.
    La0.6Ca0.4MnO31—2 TKF0.2491.0085.043Tricritical-Mean-field[83]
    2—3 TKF0.2550.8574.359crossover
    3—4 TKF0.2620.8334.18crossover
    4—5 TKF0.2670.7973.983crossover
    5—6 TKF0.2630.7763.954close to Tricritical-Mean-field
    La0.8Ca0.2MnO31—2 TKF0.3491.2314.5243D-Heisenberg/Ising[83]
    2—3 TKF0.3161.0814.421crossover
    3—4 TKF0.2810.9924.534crossover
    4—5 TKF0.2720.914.341crossover
    5—6 TKF0.2590.9184.552Tricritical-Mean-field
    La0.7Ca0.275Ba0.025MnO32—3 TMAP0.209Tricritical-Mean-field[84]
    3—4 TMAP0.2181.0986.04
    4—5 TMAP0.2271.065.67
    La0.7Ca0.25Ba0.05MnO31—2 TMAP0.221Tricritical-Mean-field[84]
    2—3 TMAP0.2251.0525.68
    3—4 TMAP0.2351.0125.31
    4—5 TMAP0.2491.0225.1
    La0.7Ca0.225Ba0.075MnO31—2 TMAP0.2160.9735.5Tricritical-Mean-field[84]
    2—3 TMAP0.2240.9825.38
    3—4 TMAP0.2381.0165.27
    4—5 TMAP0.2530.9924.92
    La0.7Ca0.2Ba0.1MnO31—2 TMAP0.3011.3825.59Tricritical-Mean-field/3D-Ising[84]
    2—3 TMAP0.3121.385.423D-Ising
    3—4 TMAP0.3221.3815.293D-Ising
    4—5 TMAP0.3261.3425.123D-Ising
    La0.7Ca0.3MnO310—14 TMAP0.2521.005Tricritical-Mean-field[85]
    DownLoad: CSV

    表 7  接近三重临界点的部分近室温钙钛矿锰氧化物的最大磁熵变和相对制冷能力

    Table 7.  Maximum magnetic entropy change and RCP values of perovskite manganites near tricritical point.

    MaterialTC/KΔH/ T–ΔSM/(J·kg–1·K–1)RCP/(J·kg–1)Ref.
    La0.7Ba0.2Ca0.1MnO3SG35022.3570[87]
    55.80167
    La0.7Ba0.2Ca0.1Mn0.95Al0.05O3SG32122.1285[87]
    55.30180
    La0.7Ba0.2Ca0.1Mn0.9Al0.1O3SG30021.8696[87]
    54.60193
    La0.7Ca0.3MnO3SS25514.5245.2[46]
    La0.7Ca0.28Sn0.02MnO3SS20012.7955.8[46]
    La0.7Ca0.26Sn0.04MnO3SS16711.5869.5[46]
    La0.69Dy0.01Ca0.3MnO3SS246514.94100.24[45]
    La0.6Ca0.3Ag0.1MnO3SS25623.8955.51[88]
    56.95179.78
    La0.6Ca0.3Ag0.1MnO3SG27025.5584.46[88]
    58.67230.35
    La0.6Ca0.3Sr0.1MnO3SG30422.8998.17[89]
    55.26262.53
    La0.7Ca0.2Sr0.1MnO3SS28434.30150[90]
    La0.7Ca0.2Sr0.1MnO3BM29711.4754.4[73]
    La0.7Ca0.19Sr0.11MnO3BM30111.4252.5[73]
    La0.7Ca0.18Sr0.12MnO3BM30911.3844.2[73]
    La0.7Ca0.27Na0.03MnO3SS26048.10232[91]
    La0.7Ca0.24Na0.06MnO3SS26347.00234[91]
    La0.7Ca0.21Na0.09MnO3SS27146.90236[91]
    La0.7Ba0.1Ca0.1Sr0.1MnO3WM31521.34102.51[71]
    53.16284.53
    La0.7Ba0.1Ca0.1Sr0.1MnO3SG33022.5874.92[71]
    54.89229.29
    La0.8Na0.2Mn0.97Bi0.03O3SS32054.77218[92]
    La0.8Na0.2Mn0.97Bi0.03O3SG25755.88252[92]
    La0.4Pr0.3Ca0.1Sr0.2MnO3SS28923.0883.3[86]
    La0.6Gd0.1Sr0.3Mn0.8Si0.2O3SG27155.35180[93]
    La0.7Bi0.05Sr0.15Ca0.1Mn0.95In0.05O3SG31056.00258[94]
    注: 1) 表中符号含义如下: TC为居里温度; ΔH为磁场变化范围; –ΔSM为最大磁熵变值; RCP为相对制冷能力, 由磁熵变曲线的峰值与半峰宽数值相乘而得; 2) SS表示固相反应法; SG表示溶胶凝胶法; WM表示湿混法; BM表示球磨法.
    DownLoad: CSV
  • [1]

    Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494Google Scholar

    [2]

    Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H, Zhang X X 2001 Appl. Phys. Lett. 78 3675Google Scholar

    [3]

    Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150Google Scholar

    [4]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450Google Scholar

    [5]

    Hu F X, Shen B G, Sun J R 2000 Appl. Phys. Lett. 76 3460Google Scholar

    [6]

    Guo Z B, Du Y W, Zhu J S, Huang H, Ding W P, Feng D 1997 Phys. Rev. Lett. 78 1142Google Scholar

    [7]

    Phan M H, Yu S C 2007 J. Magn. Magn. Mater. 308 325Google Scholar

    [8]

    Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P, Gutfleisch O 2018 Nat. Commun. 9 2680Google Scholar

    [9]

    Fujita A, Fujieda S, Hasegawa Y, Fukamichi K 2003 Phys. Rev. B 67 104416Google Scholar

    [10]

    Sun Y, Arnold Z, Kamarad J, Wang G J, Shen B G, Cheng Z H 2006 Appl. Phys. Lett. 89 172513Google Scholar

    [11]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620Google Scholar

    [12]

    Romero-Muñiz C, Tamura R, Tanaka S, Franco V 2016 Phys. Rev. B 94 134401Google Scholar

    [13]

    Franco V, Law J Y, Conde A, Brabander V, Karpenkov D Y, Radulov I, Skokov K, Gutfleisch O 2017 J. Phys. D 50 414004Google Scholar

    [14]

    Romero-Muñiz C, Franco V, Conde A 2017 Phys. Chem. Chem. Phys. 19 3582Google Scholar

    [15]

    Dagotto E, Hotta T, Moreo A 2001 Phys. Rep. 344 1Google Scholar

    [16]

    Alexandrov A S, Bratkovsky A M 1999 Phys. Rev. Lett. 82 141Google Scholar

    [17]

    Yunoki S, Hu J, Malvezzi A L, Moreo A, Furukawa N, Dagotto E 1998 Phys. Rev. Lett. 80 845Google Scholar

    [18]

    Banerjee B K 1964 Phys. Lett. 12 16Google Scholar

    [19]

    Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett. 89 222512Google Scholar

    [20]

    Bonilla C M, Herrero-Albillos J, Bartolomé F, García L M, Parra-Borderías M, Franco V 2010 Phys. Rev. B 81 224424Google Scholar

    [21]

    张蕾 2018 物理学报 67 137501Google Scholar

    Zhang L 2018 Acta Phys. Sin. 67 137501Google Scholar

    [22]

    Fan J, Pi L, Zhang L, Tong W, Ling L, Hong B, Shi Y, Zhang W, Lu D, Zhang Y 2011 Appl. Phys. Lett. 98 072508Google Scholar

    [23]

    Huang K 1987 Statistical Mechanics (2nd Ed.) (New York: Wiley) pp398–432

    [24]

    Kaul S N 1985 J. Magn. Magn. Mater. 53 5Google Scholar

    [25]

    Fisher M E, Ma S K, Nickel B G 1972 Phys. Rev. Lett. 29 917Google Scholar

    [26]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2008 Phys. Rev. B 77 064424Google Scholar

    [27]

    Linh D C, Thanh T D, Anh L H, Dao V D, Piao H G, Yu S C 2017 J. Alloys Compd. 725 484Google Scholar

    [28]

    Moutis N, Panagiotopoulos I, Pissas M, Niarchos D 1999 Phys. Rev. B 59 1129Google Scholar

    [29]

    Ghosh K, Lobb C J, Greene R L, Karabashev S G, Shulyatev D A, Arsenov A A, Mukovskii Y 1998 Phys. Rev. Lett. 81 4740Google Scholar

    [30]

    Kim D, Zink B L, Hellman F, Coey J M D 2002 Phys. Rev. B 65 214424Google Scholar

    [31]

    Mohan C V, Seeger M, Kronmüller H, Murugaraj P, Maier J 1998 J. Magn. Magn. Mater. 183 348Google Scholar

    [32]

    Nair S, Banerjee A, Narlikar A V, Prabhakaran D, Boothroyd A T 2003 Phys. Rev. B 68 132404Google Scholar

    [33]

    Kim D, Revaz B, Zink B L, Hellman F, Rhyne J J, Mitchell J F 2002 Phys. Rev. Lett. 89 227202Google Scholar

    [34]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2007 Phys. Rev. Lett. 99 177203Google Scholar

    [35]

    Jiang W, Zhou X, Williams G, Privezentsev R, Mukovskii Y 2009 Phys. Rev. B 79 214433Google Scholar

    [36]

    Oleaga A, Salazar A, Hatnean M C, Balakrishnan G 2015 Phys. Rev. B 92 024409Google Scholar

    [37]

    Venkatesh R, Pattabiraman M, Sethupathi K, Rangarajan G, Angappane S, Park J G 2008 J. Appl. Phys. 103 07B319Google Scholar

    [38]

    Phan T L, Ho T A, Thang P D, Tran Q T, Thanh T D, Phuc N X, Phan M H, Huy B T, Yu S C 2014 J. Alloys Compd. 615 937Google Scholar

    [39]

    Rößler S, Nair H S, Rößler U K, Kumar C M N, Elizabeth S, Wirth S 2011 Phys. Rev. B 84 184422Google Scholar

    [40]

    Elleuch F, Bekri M, Hussein M, Triki M, Dhahri E, Hlil E K, Bessais L 2015 Dalton Trans. 44 17712Google Scholar

    [41]

    Jiang W, Zhou X, Williams G, Mukovskii Y, Glazyrin K 2008 Phys. Rev. B 78 144409Google Scholar

    [42]

    Ho T A, Thanh T D, Yu Y, Tartakovsky D M, Ho T O, Thang P D, Le A T, Phan T L, Yu S C 2015 J. Appl. Phys. 117 17D122Google Scholar

    [43]

    Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Hlil E K, Cheikhrouhou A 2017 J. Mater. Sci. Mater. Electron. 28 6837Google Scholar

    [44]

    Phan M H, Franco V, Bingham N S, Srikanth H, Hur N H, Yu S C 2010 J. Alloys Compd. 508 238Google Scholar

    [45]

    Debbebi I S, Ezaami A, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil E K 2017 J. Mater. Sci. Mater. Electron. 28 14000Google Scholar

    [46]

    Lam D S, Dung N T, Thanh T D, Linh D C, Nan W Z, Yu S C 2020 Mater. Res. Express 7 046101Google Scholar

    [47]

    Elghoul A, Krichene A, Boudjada N C, Boujelben W 2018 Ceram. Int. 44 14510Google Scholar

    [48]

    Fan J, Ling L, Hong B, Zhang L, Pi L, Zhang Y 2010 Phys. Rev. B 81 144426Google Scholar

    [49]

    Mleiki A, Othmani S, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil E K 2015 J. Alloys Compd. 648 1043Google Scholar

    [50]

    Mnefgui S, Dhahri A, Dhahri N, Hlil E K, Dhahri J 2013 Solid State Sci. 21 19Google Scholar

    [51]

    Oumezzine M, Peña O, Kallel S, Zemni S 2011 Solid State Sci. 13 1829Google Scholar

    [52]

    Baazaoui M, Hcini S, Boudard M, Zemni S, Oumezzine M 2015 J. Supercond. Nov. Magn. 28 1887Google Scholar

    [53]

    Ho T A, Phan M H, Phuc N X, Lam V D, Phan T L, Yu S C 2016 J. Electron. Mater. 45 2508Google Scholar

    [54]

    Ghodhbane S, Dhahri A, Dhahri N, Hlil E K, Dhahri J, Alhabradi M, Zaidi M 2013 J. Alloys Compd. 580 558Google Scholar

    [55]

    Wang G F, Zhao Z R, Li H L, Zhang X F 2016 Ceram. Int. 42 18196Google Scholar

    [56]

    Khiem N V, Phong P T, Bau L V, Nam D N H, Hong L V, Phuc N X 2009 J. Magn. Magn. Mater. 321 2027Google Scholar

    [57]

    Thanh T D, Linh D C, Manh T V, Ho T A, Phan T L, Yu S C 2015 J. Appl. Phys. 117 17C101Google Scholar

    [58]

    Ginting D, Nanto D, Zhang Y D, Yu S C, Phan T L 2013 Physica B 412 17Google Scholar

    [59]

    Phong P T, Ngan L T T, Bau, L V, Nam P H, Linh P H, Dang N V, Lee I J 2017 Ceram. Int. 43 16859Google Scholar

    [60]

    Nisha P, Pillai S S, Varma M R, Suresh K G 2012 Solid State Sci. 14 40Google Scholar

    [61]

    Rößler S, Rößler U K, Nenkov K, Eckert D, Yusuf S M, Dörr K, Müller K H 2004 Phys. Rev. B 70 104417Google Scholar

    [62]

    Zhu X, Sun Y, Luo X, Lei H, Wang B, Song W, Yang Z, Dai J, Shi D, Dou S 2010 J. Magn. Magn. Mater. 322 242Google Scholar

    [63]

    Phan T L, Tran Q T, Thanh P Q, Yen P D H, Thanh T D, Yu S C 2014 Solid State Commun. 184 40Google Scholar

    [64]

    Phan T L, Thanh P Q, Sinh N H, Zhang Y D, Yu S C 2012 IEEE Trans. Magn. 48 1293Google Scholar

    [65]

    Phan T L, Thanh P Q, Sinh N H, Lee K W, Yu S C 2011 Curr. Appl. Phys. 11 830Google Scholar

    [66]

    Turki D, Ghouri Z K, Al-Meer S, Elsaid K, Ahmad M I, Easa A, Remenyi G, Mahmood S, Hlil E K, Ellouze M, Elhalouani F 2017 Magnetochemistry 3 28Google Scholar

    [67]

    Arun B, Suneesh, Sudakshina B, Akshay V R. Chandrasekhar K D, Vasundhara M 2018 J. Phys. Chem. Solids 123 327Google Scholar

    [68]

    Dhahr J, Belgacem C H, Dhahri A, Oumezzine M 2016 Appl. Phys. A 122 483Google Scholar

    [69]

    Raoufi T, Ehsani M H, Khoshnoud D S 2017 Ceram. Int. 43 5204Google Scholar

    [70]

    Mnefgui S, Zaidi N, Dhahri A, Hlil E K, Dhahri J 2014 J. Solid State Chem. 215 193Google Scholar

    [71]

    Munazat D R, Kurniawan B, Razaq D S, Watanabe K, Tanaka H 2020 Physica B 592 412227Google Scholar

    [72]

    Ezaami A, Sellami-Jmal E, Cheikhrouhou-Koubaa W, Cheikhrouhou A, Hlil E K 2017 J. Phys. Chem. Solids 109 109Google Scholar

    [73]

    Thanh T D, Phan T L, Chien N V, Manh D H, Yu S C 2014 IEEE Trans. Magn. 50 2501504Google Scholar

    [74]

    Ezaami A, Sfifir I, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A 2017 J. Alloys Compd. 693 658Google Scholar

    [75]

    Ho T A, Thanh T D, Manh T V, Ho T O, Thang P D, Phan T L, Yu S C 2015 Mater. Trans. 56 1331Google Scholar

    [76]

    Makni-Chakroun J, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A 2015 J. Alloys Compd. 650 421Google Scholar

    [77]

    Phong P T, Ngan L T T, Dang N V, Nguyen L H, Nam P H, Thuy D M, Tuan N D, Bau L V, Lee I J 2018 J. Magn. Magn. Mater. 449 558Google Scholar

    [78]

    Phong P T, Ngan L T T, Bau L V, Phuc N X, Nam P H, Phong L T H, Dang N V, Lee I J 2019 J. Magn. Magn. Mater. 475 374Google Scholar

    [79]

    Messaoui I, Omrani H, Mansouri M, Cheikhrouhou-Koubaa W, Koubaa M, Cheikhrouhou A, Hlil E K 2016 Ceram. Int. 42 17032Google Scholar

    [80]

    Mahjoub S, Baazaoui M, Hlil E K, Oumezzine M 2015 Ceram. Int. 41 12407Google Scholar

    [81]

    Kharrat A B J, Hlil E K, Boujelben W 2018 J. Alloys Compd. 739 101Google Scholar

    [82]

    Kharrat A B J, Boujelben W 2019 J. Low Temp. Phys. 197 357Google Scholar

    [83]

    Zhang P, Lampen P, Phan T L, Yu S C, Thanh T D, Dan N H, Lam V D, Srikanth H, Phan M H 2013 J. Magn. Magn. Mater. 348 146Google Scholar

    [84]

    Phan T L, Dang N T, Ho T A, Manh T V, Thanh T D, Jung C U, Lee B W, Le A T, Phan A D, Yu S C 2016 J. Alloys Compd. 657 818Google Scholar

    [85]

    Phan T L, Tola P S, Dang N T, Rhyee J S, Shon W H, Ho T A 2017 J. Magn. Magn. Mater. 441 290Google Scholar

    [86]

    Ghorai S, Skini R, Hedlund D, Ström P, Svedlindh P 2020 Sci. Rep. 10 19485Google Scholar

    [87]

    Zaidi M A, Dhahri J, Zeydi I, Alharbi T, Belmabrouk H 2017 RSC Adv. 7 43590Google Scholar

    [88]

    Assoudi N, Walha I, Nouri K, Dhahri E, Bessais L 2018 J. Alloys Compd. 753 282Google Scholar

    [89]

    Jeddi M, Gharsallah H, Bejar M, Bekri M, Dhahri E, Hlil E K 2018 RSC Adv. 8 9430Google Scholar

    [90]

    Phan T L, Zhang Y D, Zhang P, Thanh T D, Yu S C 2012 J. Appl. Phys. 112 093906Google Scholar

    [91]

    Ho T A, Dang N T, Phan T L, Yang D S, Lee B W, Yu S C 2016 J. Alloys Compd. 676 305Google Scholar

    [92]

    Laouyenne M R, Baazaoui M R, Farah K, Hlil E K, Oumezzine M 2019 J. Magn. Magn. Mater. 474 393Google Scholar

    [93]

    Dhahri A, Dhahri E, Hlil E K 2017 J. Alloys Compd. 727 449Google Scholar

    [94]

    Belkahla A, Cherif K, Dhahri J, Hlil E K 2017 J. Alloys Compd. 715 266Google Scholar

  • [1] Lin Yuan, Hu Feng-Xia, Shen Bao-Gen. Phase transition regulation, magnetocaloric effect, and abnormal thermal expansion. Acta Physica Sinica, 2023, 72(23): 237501. doi: 10.7498/aps.72.20231118
    [2] Peng Jia-Xin, Tang Ben-Zhen, Chen Qi-Xin, Li Dong-Mei, Guo Xiao-Long, Xia Lei, Yu Peng. Preparation and magnetocaloric properties of Gd45Ni30Al15Co10 amorphous alloy. Acta Physica Sinica, 2022, 71(2): 026102. doi: 10.7498/aps.70.20211530
    [3] Zhang Yan, Zong Shuo-Tong, Sun Zhi-Gang, Liu Hong-Xia, Chen Feng-Hua, Zhang Ke-Wei, Hu Ji-Fan, Zhao Tong-Yun, Shen Bao-Gen. Magnetic and anisotropic magnetocaloric effects of HoCoSi fast quenching ribbons. Acta Physica Sinica, 2022, 71(16): 167501. doi: 10.7498/aps.71.20220683
    [4] Zhang Hu, Xing Cheng-Fen, Long Ke-Wen, Xiao Ya-Ning, Tao Kun, Wang Li-Chen, Long Yi. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physica Sinica, 2018, 67(20): 207501. doi: 10.7498/aps.67.20180927
    [5] Hao Zhi-Hong,  Wang Hai-Ying,  Zhang Quan,  Mo Zhao-Jun. Magnetic and magnetocaloric effects of Eu0.9M0.1TiO3 (M=Ca, Sr, Ba, La, Ce, Sm) compounds. Acta Physica Sinica, 2018, 67(24): 247502. doi: 10.7498/aps.67.20181750
    [6] Yang Jing-Jie, Zhao Jin-Liang, Xu Lei, Zhang Hong-Guo, Yue Ming, Liu Dan-Min, Jiang Yi-Jian. Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe11.5Al1.5 compound. Acta Physica Sinica, 2018, 67(7): 077501. doi: 10.7498/aps.67.20172250
    [7] Huo Jun-Tao, Sheng Wei, Wang Jun-Qiang. Magnetocaloric effects and magnetic regenerator performances in metallic glasses. Acta Physica Sinica, 2017, 66(17): 176409. doi: 10.7498/aps.66.176409
    [8] Zheng Xin-Qi, Shen Jun, Hu Feng-Xia, Sun Ji-Rong, Shen Bao-Gen. Research progress in magnetocaloric effect materials. Acta Physica Sinica, 2016, 65(21): 217502. doi: 10.7498/aps.65.217502
    [9] Wu Li-Qian, Qi Wei-Hua, Li Yu-Chen, Li Shi-Qiang, Li Zhuang-Zhi, Xue Li-Chao, Ge Xing-Shuo, Ding Li-Li. Influence of thermal treatment on the ionic valence and the magnetic structure of perovskite manganites La0.95Sr0.05MnO3. Acta Physica Sinica, 2016, 65(2): 027501. doi: 10.7498/aps.65.027501
    [10] Wang Qiang. Electron spin resonance study on charge ordering and spin ordering in nanocrystalline Bi0.2Ca0.8MnO3. Acta Physica Sinica, 2015, 64(18): 187501. doi: 10.7498/aps.64.187501
    [11] Wang Zhi-Guo, Xiang Jun-You, Xu Bao, Wan Su-Lei, Lu Yi, Zhang Xue-Feng, Zhao Jian-Jun. Magnetic and transport properties of perovskite manganites (La1-xGdx)4/3Sr5/3Mn2O7 (x=0, 0.025) polycrystalline samples. Acta Physica Sinica, 2015, 64(6): 067501. doi: 10.7498/aps.64.067501
    [12] Yang Hong, Qi Wei-Hua, Ji Deng-Hui, Shang Zhi-Feng, Zhang Xiao-Yun, Xu Jing, Lang Li-Li, Tang Gui-De. Structure and magnetic properties of perovskite manganites La2/3Sr1/3FexMn1-xO 3. Acta Physica Sinica, 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [13] Wang Fang, Yuan Feng-Ying, Wang Jin-Zhi. Magnetic properties and magnetocaloric effect in Mn42Al50-xFe8+x alloys. Acta Physica Sinica, 2013, 62(16): 167501. doi: 10.7498/aps.62.167501
    [14] Chen Hui, Zhang Guo-Ying, Yang Dan, Gao Jiao. A method of determining the highest temperature attained by magnetic material in the adiabatic magnetization. Acta Physica Sinica, 2012, 61(9): 097501. doi: 10.7498/aps.61.097501
    [15] Wang Qiang. Charge order and phase separation in Bi0.5Ca0.5Mn1-xCoxO3 system. Acta Physica Sinica, 2010, 59(9): 6569-6574. doi: 10.7498/aps.59.6569
    [16] Li Xiao-Juan, Wang Qiang. Grain size effect of charge ordering of Bi0.2Ca0.8MnO3. Acta Physica Sinica, 2009, 58(9): 6482-6486. doi: 10.7498/aps.58.6482
    [17] Zhang Hao-Lei, Li Zhe, Qiao Yan-Fei, Cao Shi-Xun, Zhang Jin-Cang, Jing Chao. Martensitic transformation and magnetocaloric effect in Ni-Co-Mn-Sn Heusler alloy. Acta Physica Sinica, 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [18] Zhao Hua-Ying, Yang Huan, Ma Ji-Yun, Fang Xu, M. Kamran, Dai Yao-Min, Li Ming, Zhao Bai-Ru, Qiu Xiang-Gang. Stress-induced effects in epitaxial La0.33Pr0.34Ca0.33MnO3 films. Acta Physica Sinica, 2008, 57(11): 7168-7172. doi: 10.7498/aps.57.7168
    [19] Jing Chao, Chen Ji-Ping, Li Zhe, Cao Shi-Xun, Zhang Jin-Cang. Martensitic transformation and magnetocaloric effect in Ni50Mn35In15 Heusler alloy. Acta Physica Sinica, 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [20] CHEN WEI, ZHONG WEI, PAN CHENG, CHANG HONG, DU YOU-WEI. CURIE TEMPERATURE AND MAGNETOCALORIC EFFECT OF POLYCRYSTALLINE La0.8-xCa0.2MnO3. Acta Physica Sinica, 2001, 50(2): 319-323. doi: 10.7498/aps.50.319
Metrics
  • Abstract views:  7347
  • PDF Downloads:  193
  • Cited By: 0
Publishing process
  • Received Date:  15 January 2021
  • Accepted Date:  10 March 2021
  • Available Online:  31 July 2021
  • Published Online:  05 August 2021

/

返回文章
返回