Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation

Zhao Yi-Mo Huang Zhi-Wei Peng Ren-Miao Xu Peng-Peng Wu Qiang Mao Yi-Chen Yu Chun-Yu Huang Wei Wang Jian-Yuan Chen Song-Yan Li Cheng

Citation:

Indium tin oxid/germanium Schottky photodetectors modulated by ultra-thin dielectric intercalation

Zhao Yi-Mo, Huang Zhi-Wei, Peng Ren-Miao, Xu Peng-Peng, Wu Qiang, Mao Yi-Chen, Yu Chun-Yu, Huang Wei, Wang Jian-Yuan, Chen Song-Yan, Li Cheng
PDF
HTML
Get Citation
  • Germanium (Ge) photodetectorhas been considered as one of the promising optoelectronic devices for optoelectronic integration. So far, most of reported Ge photodetectors with bulk Ge show high dark currents and low responsivities. In this paper, ultra-thin dielectric interlayer-modulated indium tin oxid (ITO)/Ge Schottky photodetectors with high responsivities and low dark currents are investigated, in which the ultra-thin dielectric interlayers are deposited through atomic layer deposition. The characteristics of ITO/Al2O3 (or MoO3)/Ge Schottky photodiodes fabricated on bulk Ge wafers with various doping concentrations and Ge epilayer on silicon substrates are comparatively studied. It is found that the 2-nm-thick Al2O3 intercalation between ITO transparent electrode and Ge can effectively enhance the Schottky barrier heights of the photodetectors and trap holes at interface states, rendering their dark currents low and responsivities high. The effective Schottky barrier heights increase from 0.34 eV (ITO/i-Ge) to 0.55 eV (ITO/Al2O3/i-Ge), and from 0.24 eV (ITO/n-Ge) to 0.56 eV (ITO/Al2O3/n-Ge). While MoO3 intercalation between ITO and Ge has no significant effect on the characteristics of all of the photodetectors due to its large electron affinity. The best performance is realized on the ITO/Al2O3/i-Ge photodetector with a low dark current of 5.91 mA/cm–2 at –4 V, sharply dropping by two orders of magnitude, compared with that of the ITO/i-Ge photodetector without the Al2O3 interlayer, and the responsivity is significantly improved to 4.11 A/W at 1310 nm. The ITO/Al2O3/epi-Ge photodetector fabricated on 500 nm Ge epilayer on a silicon substrate also shows the improved performance with a dark current density of 226.70 mA/cm2 at –3 V and a responsivity of 0.38 A/W at 1310 nm, compared with ITO/epi-Ge photodetector. Finally, experiment studies of single-point infrared images at 1310 nm and 1550 nm are carried out with the ITO/Al2O3/i-Ge photodetector on a two-dimensional XY displacement platform, which contains 25 pixels and a total detection size of 1750 μm × 1750 μm. The clear and distinguishable images of the infrared spot position are obtained. Consequently, these results suggest that the dielectric interlayer- modulated Schottky photodetectors are competitive in low power consumption and high responsivity, and have great potential applications in the civil field of short wave infrared imaging.
      Corresponding author: Li Cheng, lich@xmu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62074134)
    [1]

    Vivien L, Rouvière M, Fédéli J M, Marris-Morini D, Damlencourt J F, Mangeney J, Crozat P, Melhaoui L E, Cassan E, Le Roux X, Pascal D, Laval S 2007 Opt. Express 15 9843Google Scholar

    [2]

    Eng P C, Song S, Ping B 2015 Nanophotonics-Berlin 4 277Google Scholar

    [3]

    Soref R 1993 P. IEEE 81 1687Google Scholar

    [4]

    Soref R 2010 Nat. Photonics 4 495Google Scholar

    [5]

    Eng P C, Song S, Ping B 2010 Nat. Photonics 4 527Google Scholar

    [6]

    Wang J A, Lee S 2011 Sensors 11 696Google Scholar

    [7]

    Ahn D, Hong C Y, Liu F, Giziewicz W, Beals M, Kimerling L C, Michel J, Chen J, Kartner F X 2007 Opt. Express 15 3916Google Scholar

    [8]

    Kumar S, Chatterjee A, Selvaraja S K, Avasthi S 2020 IEEE Sens. J. 20 4660Google Scholar

    [9]

    王兴军, 苏昭棠, 周治平 2015 中国科学: 物理学 力学 天文学 1 15

    Wang X J, Su Z T, Zhou Z P 2015 Sci. Sin-Phys. Mech. Astron. 1 15

    [10]

    Rogalski A 2003 Prog. Quant. Electron 27 59Google Scholar

    [11]

    Yu C Y, Huang Z W, Lin G Y, Mao Y C, Hong H Y, Zhang L, Zhao Y M, Wang J Y, Huang W, Chen S Y, Li C 2020 J. Phys. D 53 125103Google Scholar

    [12]

    Cui J S, Li T T, Yang F H, Cui W J, Chen H M 2021 Opt. Commun. 480 126467Google Scholar

    [13]

    Vivien L, Osmond J, Fedeli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S 2009 Opt. Express 17 6252Google Scholar

    [14]

    Li X L, Liu Z, Peng L Z, Liu X Q, Wang N, Zhao Y, Zhen J, Zuo Y H, Xue C L, Cheng B W 2020 Chinese Phys. Lett. 37 038503Google Scholar

    [15]

    Fama S, Colace L, Masini G, Assanto G, Luan H C 2002 Appl. Phys. Lett. 81 586Google Scholar

    [16]

    Liu J F, Michel J, Giziewicz W, Pan D, Wada K, Cannon D D, Jongthammanurak S, Danielson D T, Kimerling L C, Chen J, Ilday F O, Kartner F X, Yasaitis J 2005 Appl. Phys. Lett. 87 103501Google Scholar

    [17]

    Huang Z H, Kong N, Guo X Y, Liu M G, Duan N, Beck A L, Banerjee S K, Campbell J C 2006 IEEE J. Sel. Top. Quantum Electron. 12 1450Google Scholar

    [18]

    Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W, Zaoui W S, Bowers J E, Beling A, McIntosh D C, Zheng X G, Campbell J C 2009 Nat. Photonics 3 59Google Scholar

    [19]

    Zhu H, Shan C X, Wang L K, Zheng J, Zhang J Y, Yao B, Shen D Z 2010 J. Phys. Chem. C 114 7169Google Scholar

    [20]

    Yu J, Shan C X, Qiao Q, Xie X H, Wang S P, Zhang Z Z, Shen D Z 2012 Sensors 12 1280Google Scholar

    [21]

    Huang Z W, Yu C Y, Chang A L, Zhao Y M, Huang W, Chen S Y, Li C 2020 J. Mater. Sci. 55 8630Google Scholar

    [22]

    Mazur M, Pastuszek R, Wojcieszak D, Kaczmarek D, Lubanska A https://www.emerald.com/insight/content/doi/10.1108/CW-11-2019-0170/full/html [2020-12-07]

    [23]

    Huang Z W, Mao Y C, Lin G Y, Yi X H, Chang A L, Li C, Chen S Y, Huang W, Wang J Y 2018 Opt. Express 26 5827Google Scholar

    [24]

    Assefa S, Fengnian X, Vlasov Y A 2010 In Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Los Angeles, CA USA, March 21−25, 2010 p1

    [25]

    Feng N N, Dong P, Zheng D W, Liao S R, Liang H, Shafiiha R, Feng D Z, Li G L, Cunningham J E, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 96Google Scholar

    [26]

    DeRose C T, Trotter D C, Zortman W A, Starbuck A L, Fisher M, Watts M R, Davids P S 2011 Opt. Express 19 24897Google Scholar

    [27]

    Harris N C, Baehr-Jones T, Lim A E J, Liow T Y, Lo G Q, Hochberg M 2013 J. Lightwave Technol. 31 23Google Scholar

    [28]

    Chen H T, Verheyen P, De Heyn P, Lepage G, De Coster J, Absil P, Roelkens G, Van Campenhout J 2015 J. Lightwave Technol. 33 820Google Scholar

    [29]

    王尘, 许怡红, 李成, 林海军 2017 物理学报 66 198502Google Scholar

    Wang C, Xu Y H, Li C, Lin H J 2017 Acta Phys. Sin. 66 198502Google Scholar

    [30]

    Tong Y, Liu B, Lim P S Y, Yeo Y C 2012 IEEE Electron Device Lett. 33 773Google Scholar

    [31]

    Manik P P, Lodha S 2015 Appl. Phys. Express 8 051302Google Scholar

    [32]

    Robertson j 2000 J. Vac. Sci. Technol. B 18 1785Google Scholar

    [33]

    Zheng S, Yang W, Sun Q Q, Chen L, Zhou P, Wang P F, Zhang D W, Xiao F 2013 Appl. Phys. Lett. 103 261602

    [34]

    Irfan I, Turinske A J, Bao Z N, Gao Y L 2012 Appl. Phys. Lett. 101 093305Google Scholar

    [35]

    韩百超, 高明, 陈东运, 宋文磊, 宋晓敏, 徐飞, 赵磊, 马忠权, 张志恒, 莫镜辉 2017 第一届全国功能薄膜与涂层学术研讨会暨国际论坛 中国昆明 2017-07-23 p2

    Han B C, Gao M, Chen D Y, Song W L, Song X M, Xu F, Zhao L, Ma Z Q, Zhang Z H, Mo J H 2017 Summary of the First National Symposium on Functional Films and Coatings and International Forums Kun Ming, China, July 23, 2017 p2 (in Chinese)

  • 图 1  10 µm × 10 µm原子力显微镜图 (a) 本征锗表面; (b) MoO3(2 nm)/i-Ge; (c) Al2O3(2 nm)/i-Ge; (d) ITO/介质层/Ge光电探测器结构示意图

    Figure 1.  AFM images with a scanned area of 10 µm × 10 µm: (a) Bare i-Ge; (b) MoO3 (2 nm)/i-Ge; (c) Al2O3(2 nm)/i-Ge; (d) schematic illustration of the ITO/dielectric-layer/Ge photodetector.

    图 2  探测器在不同激光功率(1310 nm)照射下的I-V曲线与暗电流曲线对比 (a) ITO/Al2O3/n-Ge; (b) ITO/MoO3/n-Ge; (c) ITO/n-Ge; (d) ITO/Al2O3/i-Ge; (e) ITO/MoO3/i-Ge; (f) ITO/i-Ge; (g) ITO/Al2O3/Ge-epi; (h) ITO/MoO3/Ge-epi; (i) ITO/Ge-epi

    Figure 2.  Photocurrent and darkcurrent of the detectors measured under illumination by a 1310 nm laser at different powers: (a) ITO/Al2O3/n-Ge; (b) ITO/MoO3/n-Ge; (c) ITO/n-Ge; (d) ITO/Al2O3/i-Ge; (e) ITO/MoO3/i-Ge; (f) ITO/i-Ge; (g) ITO/Al2O3/Ge-epi; (h) ITO/MoO3/Ge-epi; (i) ITO/Ge-epi.

    图 3  探测器在偏压为–1, –2, –3, –4 V、不同激光功率(1310 nm)照射下的响应度变化曲线 (a) ITO/Al2O3/n-Ge; (b) ITO/MoO3/n-Ge; (c) ITO/n-Ge; (d) ITO/Al2O3/i-Ge; (e) ITO/MoO3/i-Ge; (f) ITO/i-Ge; (g) ITO/Al2O3/Ge-epi; (h) ITO/MoO3/Ge-epi; (i) ITO/Ge-epi

    Figure 3.  Responsivities of the photodetectors measured at –1, –2, –3 and –4 V reverse bias under illumination by a 1310 nm laser at various powers: (a) ITO/Al2O3/n-Ge; (b)ITO/MoO3/n-Ge; (c) ITO/n-Ge; (d) ITO/Al2O3/i-Ge; (e) ITO/MoO3/i-Ge; (f) ITO/i-Ge; (g) ITO/Al2O3/Ge-epi; (h) ITO/MoO3/Ge-epi; (i) ITO/Ge-epi.

    图 4  (a) ITO/Al2O3/i-Ge变温I-V曲线; (b) i-Ge组器件ln(J/T 2)与1/(kT)拟合结果; (c) n-Ge组器件ln(J/T 2)与1/(kT)拟合结果; (d) Ge-epi组器件ln(J/T 2)与1/(kT)拟合结果

    Figure 4.  (a) Temperature dependent I-V characteristics of ITO/Al2O3/i-Ge detector; (b) ln(J/T 2) versus 1/(kT) for i-Ge detectors; (c) ln(J/T 2) versus 1/(kT) for n-Ge detectors; (d) ln(J/T 2) versus 1/(kT) for Ge-epi detectors.

    图 5  有效肖特基势垒高度与器件类型关系图

    Figure 5.  Diagram of effective Schottky barrier heights with device types.

    图 6  光照下探测器的能带结构图以及载流子输运示意图 (a) ITO/i-Ge; (b) ITO/Al2O3/i-Ge; (c) ITO/MoO3/n-Ge

    Figure 6.  Energy band and carrier transport diagram of detectors under light illumination: (a) ITO/i-Ge; (b) ITO/Al2O3/i-Ge; (c) ITO/MoO3/n-Ge.

    图 7  ITO/Al2O3/i-Ge二维成像图 (a) 1310 nm波长; (b) 1550 nm波长

    Figure 7.  Two dimensional image obtained from the ITO/Al2O3/i-Ge detector: (a) 1310 nm laser; (b) 1550 nm laser.

    表 1  超薄介质插层调制的ITO/Ge肖特基光电探测器与文献报道的器件性能对比

    Table 1.  A comparison of the performance of our works with those from other groups.

    年份暗电流大小(密度)响应度结构类型文献
    200640 mA/cm2@1 V0.28 A/W@1550 nmNI PIN[17]
    201090 μA@1 V0.14 A/W@1550 nmWG MSM[24]
    20100.2 mA@–0.5 V0.7 A/W@1550 nmWG PIN[25]
    201140 mA/cm2@1 V0.8 A/W@1500 nmWG Photodiode[26]
    2013412 μA@5 V1.76 A/W@1550 nmWG MSM[27]
    20153 nA@–1 V1.0 A/W@1567 nmWG PIN[28]
    201775 mA/cm2@1 V0.58 A/W@1550 nmWG PIN[29]
    20215.91 mA/cm2@–4 V0.46 A/W@1550 nm
    4.11 A/W@1310 nm
    NI MS本文
    DownLoad: CSV

    表 2  不同结构的有效肖特基势垒高度

    Table 2.  Effective Schottky barrier heights of different structures.

    结构类型i-Gen-GeGe-epi
    ITO0.34 eV0.24 eV0.29 eV
    2 nm Al2O3 + ITO0.55 eV0.56 eV0.30 eV
    2 nm MoO3 + ITO0.39 eV0.22 eV0.25 eV
    DownLoad: CSV
  • [1]

    Vivien L, Rouvière M, Fédéli J M, Marris-Morini D, Damlencourt J F, Mangeney J, Crozat P, Melhaoui L E, Cassan E, Le Roux X, Pascal D, Laval S 2007 Opt. Express 15 9843Google Scholar

    [2]

    Eng P C, Song S, Ping B 2015 Nanophotonics-Berlin 4 277Google Scholar

    [3]

    Soref R 1993 P. IEEE 81 1687Google Scholar

    [4]

    Soref R 2010 Nat. Photonics 4 495Google Scholar

    [5]

    Eng P C, Song S, Ping B 2010 Nat. Photonics 4 527Google Scholar

    [6]

    Wang J A, Lee S 2011 Sensors 11 696Google Scholar

    [7]

    Ahn D, Hong C Y, Liu F, Giziewicz W, Beals M, Kimerling L C, Michel J, Chen J, Kartner F X 2007 Opt. Express 15 3916Google Scholar

    [8]

    Kumar S, Chatterjee A, Selvaraja S K, Avasthi S 2020 IEEE Sens. J. 20 4660Google Scholar

    [9]

    王兴军, 苏昭棠, 周治平 2015 中国科学: 物理学 力学 天文学 1 15

    Wang X J, Su Z T, Zhou Z P 2015 Sci. Sin-Phys. Mech. Astron. 1 15

    [10]

    Rogalski A 2003 Prog. Quant. Electron 27 59Google Scholar

    [11]

    Yu C Y, Huang Z W, Lin G Y, Mao Y C, Hong H Y, Zhang L, Zhao Y M, Wang J Y, Huang W, Chen S Y, Li C 2020 J. Phys. D 53 125103Google Scholar

    [12]

    Cui J S, Li T T, Yang F H, Cui W J, Chen H M 2021 Opt. Commun. 480 126467Google Scholar

    [13]

    Vivien L, Osmond J, Fedeli J M, Marris-Morini D, Crozat P, Damlencourt J F, Cassan E, Lecunff Y, Laval S 2009 Opt. Express 17 6252Google Scholar

    [14]

    Li X L, Liu Z, Peng L Z, Liu X Q, Wang N, Zhao Y, Zhen J, Zuo Y H, Xue C L, Cheng B W 2020 Chinese Phys. Lett. 37 038503Google Scholar

    [15]

    Fama S, Colace L, Masini G, Assanto G, Luan H C 2002 Appl. Phys. Lett. 81 586Google Scholar

    [16]

    Liu J F, Michel J, Giziewicz W, Pan D, Wada K, Cannon D D, Jongthammanurak S, Danielson D T, Kimerling L C, Chen J, Ilday F O, Kartner F X, Yasaitis J 2005 Appl. Phys. Lett. 87 103501Google Scholar

    [17]

    Huang Z H, Kong N, Guo X Y, Liu M G, Duan N, Beck A L, Banerjee S K, Campbell J C 2006 IEEE J. Sel. Top. Quantum Electron. 12 1450Google Scholar

    [18]

    Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W, Zaoui W S, Bowers J E, Beling A, McIntosh D C, Zheng X G, Campbell J C 2009 Nat. Photonics 3 59Google Scholar

    [19]

    Zhu H, Shan C X, Wang L K, Zheng J, Zhang J Y, Yao B, Shen D Z 2010 J. Phys. Chem. C 114 7169Google Scholar

    [20]

    Yu J, Shan C X, Qiao Q, Xie X H, Wang S P, Zhang Z Z, Shen D Z 2012 Sensors 12 1280Google Scholar

    [21]

    Huang Z W, Yu C Y, Chang A L, Zhao Y M, Huang W, Chen S Y, Li C 2020 J. Mater. Sci. 55 8630Google Scholar

    [22]

    Mazur M, Pastuszek R, Wojcieszak D, Kaczmarek D, Lubanska A https://www.emerald.com/insight/content/doi/10.1108/CW-11-2019-0170/full/html [2020-12-07]

    [23]

    Huang Z W, Mao Y C, Lin G Y, Yi X H, Chang A L, Li C, Chen S Y, Huang W, Wang J Y 2018 Opt. Express 26 5827Google Scholar

    [24]

    Assefa S, Fengnian X, Vlasov Y A 2010 In Proceedings of Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference Los Angeles, CA USA, March 21−25, 2010 p1

    [25]

    Feng N N, Dong P, Zheng D W, Liao S R, Liang H, Shafiiha R, Feng D Z, Li G L, Cunningham J E, Krishnamoorthy A V, Asghari M 2010 Opt. Express 18 96Google Scholar

    [26]

    DeRose C T, Trotter D C, Zortman W A, Starbuck A L, Fisher M, Watts M R, Davids P S 2011 Opt. Express 19 24897Google Scholar

    [27]

    Harris N C, Baehr-Jones T, Lim A E J, Liow T Y, Lo G Q, Hochberg M 2013 J. Lightwave Technol. 31 23Google Scholar

    [28]

    Chen H T, Verheyen P, De Heyn P, Lepage G, De Coster J, Absil P, Roelkens G, Van Campenhout J 2015 J. Lightwave Technol. 33 820Google Scholar

    [29]

    王尘, 许怡红, 李成, 林海军 2017 物理学报 66 198502Google Scholar

    Wang C, Xu Y H, Li C, Lin H J 2017 Acta Phys. Sin. 66 198502Google Scholar

    [30]

    Tong Y, Liu B, Lim P S Y, Yeo Y C 2012 IEEE Electron Device Lett. 33 773Google Scholar

    [31]

    Manik P P, Lodha S 2015 Appl. Phys. Express 8 051302Google Scholar

    [32]

    Robertson j 2000 J. Vac. Sci. Technol. B 18 1785Google Scholar

    [33]

    Zheng S, Yang W, Sun Q Q, Chen L, Zhou P, Wang P F, Zhang D W, Xiao F 2013 Appl. Phys. Lett. 103 261602

    [34]

    Irfan I, Turinske A J, Bao Z N, Gao Y L 2012 Appl. Phys. Lett. 101 093305Google Scholar

    [35]

    韩百超, 高明, 陈东运, 宋文磊, 宋晓敏, 徐飞, 赵磊, 马忠权, 张志恒, 莫镜辉 2017 第一届全国功能薄膜与涂层学术研讨会暨国际论坛 中国昆明 2017-07-23 p2

    Han B C, Gao M, Chen D Y, Song W L, Song X M, Xu F, Zhao L, Ma Z Q, Zhang Z H, Mo J H 2017 Summary of the First National Symposium on Functional Films and Coatings and International Forums Kun Ming, China, July 23, 2017 p2 (in Chinese)

  • [1] Su Ran, Xi Zhao-Ying, Li Shan, Zhang Jia-Han, Jiang Ming-Ming, Liu Zeng, Tang Wei-Hua. Self-powered solar-blind ultraviolet photoelectric detector based on GaSe/β-Ga2O3 heterojunction. Acta Physica Sinica, 2024, 0(0): . doi: 10.7498/aps.73.20240267
    [2] Wang Ai-Wei, Zhu Lu-Ping, Shan Yan-Su, Liu Peng, Cao Xue-Lei, Cao Bing-Qiang. High-performance CsSnBr3/Si PN heterojunction photodetectors prepared by pulsed laser deposition epitaxy. Acta Physica Sinica, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [3] Sun Tang-You, Yu Yan-Li, Qin Zu-Bin, Chen Zan-Hui, Chen Jun-Li, Jiang Yue, Zhang Fa-Bi. Multi-band response Cs2AgBiBr6 double perovskite photodetector based on TiO2 nanopillars. Acta Physica Sinica, 2024, 73(7): 078502. doi: 10.7498/aps.73.20231919
    [4] Wu Peng, Tan Lun, Li Wei, Cao Li-Wei, Zhao Jun-Bo, Qu Yao, Li Ang. Preparation and photoelectric property of large scale monolayer MoS2. Acta Physica Sinica, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [5] Zhao Ji-Yu, Tan Qiu-Hong, Liu Lei, Yang Wei-Ye, Wang Qian-Jin, Liu Ying-Kai. High-performance photodetectors based on Au nanoislands decorated CdSSe nanobelt. Acta Physica Sinica, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [6] Liu Xiao-Xuan, Sun Fei-Yang, Wu Ying, Yang Sheng-Yi, Zou Bing-Suo. Research progress of silicon nanowires array photodetectors. Acta Physica Sinica, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [7] Fu Qun-Dong, Wang Xiao-Wei, Zhou Xiu-Xian, Zhu Chao, Liu Zheng. Synthesis of two-dimensional Bi2O2Se on silicon substrate by chemical vapor deposition and its photoelectric detection application. Acta Physica Sinica, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [8] Hu Zi-Ting, Shu Xin, Wang Xiang, Li Yue, Xu Run, Hong Feng, Ma Zhong-Quan, Jiang Zui-Min, Xu Fei. Air-stable CsPbIBr2 photodetector via dual-ligand-assisted solution strategy. Acta Physica Sinica, 2022, 71(11): 116801. doi: 10.7498/aps.71.20212143
    [9] Shu Yan-Tao, Zhang You-Wei, Wang Shun. Photodetectors based on homojunctions of transition metal dichalcogenides. Acta Physica Sinica, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [10] Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing. Field effect transistor photodetector based on two dimensional SnSe2. Acta Physica Sinica, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [11] An Tao, Tu Chuan-Bao, Gong Wei. Organic color photodetectors based on tri-phase bulk heterojunction with wide sectrum and photoelectronic mltiplication. Acta Physica Sinica, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [12] Zheng Jia-Jin, Wang Ya-Ru, Yu Ke-Han, Xu Xiang-Xing, Sheng Xue-Xi, Hu Er-Tao, Wei Wei. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Physica Sinica, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [13] Wang Chen, Xu Yi-Hong, Li Cheng, Lin Hai-Jun. Fabrication and characteristics of high performance SOI-based Ge PIN waveguide photodetector. Acta Physica Sinica, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [14] Zhao Hong-Yu, Wang Di, Wei Zhi, Jin Guang-Yong. Finite element analysis and experimental study on electrical damage of silicon photodiode induced by millisecond pulse laser. Acta Physica Sinica, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [15] Liang Zhen-Jiang, Liu Hai-Xia, Niu Yan-Xiong, Yin Yi-heng. Design and performance analysis of microcavity-enhanced graphene photodetector. Acta Physica Sinica, 2016, 65(13): 138501. doi: 10.7498/aps.65.138501
    [16] Yang Dan, Zhang Li, Yang Sheng-Yi, Zou Bing-Suo. Low-voltage pentacene photodetector based on a vertical transistor configuration. Acta Physica Sinica, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [17] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [18] Huo Wen-Juan, Xie Hong-Yun, Liang Song, Zhang Wan-Rong, Jiang Zhi-Yun, Chen Xiang, Lu Dong. Uni-traveling-carrier double heterojunction phototransistor photodetector. Acta Physica Sinica, 2013, 62(22): 228501. doi: 10.7498/aps.62.228501
    [19] Yin Wei-Hong, Han Qin, Yang Xiao-Hong. The progress of semiconductor photoelectric devices based on graphene. Acta Physica Sinica, 2012, 61(24): 248502. doi: 10.7498/aps.61.248502
    [20] Guo Jian-Chuan, Zuo Yu-Hua, Zhang Yun, Zhang Ling-Zi, Cheng Bu-Wen, Wang Qi-Ming. Theoretical analysis and experimental study of the space-charge-screening effect in uni-traveling-carrier photodiode. Acta Physica Sinica, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
Metrics
  • Abstract views:  4555
  • PDF Downloads:  96
  • Cited By: 0
Publishing process
  • Received Date:  21 January 2021
  • Accepted Date:  11 February 2021
  • Available Online:  30 August 2021
  • Published Online:  05 September 2021

/

返回文章
返回