Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Telecentric in-line-and-off-axis hybrid digital holographic high-resolution reconstruction method

Zhong Zhi Zhao Wan-Ting Shan Ming-Guang Liu Lei

Citation:

Telecentric in-line-and-off-axis hybrid digital holographic high-resolution reconstruction method

Zhong Zhi, Zhao Wan-Ting, Shan Ming-Guang, Liu Lei
PDF
HTML
Get Citation
  • In-line digital holography usually employs a phase retrieval algorithm to decouple the phase information but fails to eliminate the unwanted DC and twin image terms when the measured sample does not agree with the sparsity. While the off-axis digital holography can efficiently remove the unwanted image terms but can not reserve the high frequencies of the sample to realize high resolution. The in-line-and-off-axis hybrid digital holography was then developed to provide a relatively high resolution digital holographic imaging without considering the effect of the unwanted terms. In other words, the in-line-and-off-axis hybrid digital holography merges all of the best virtues of the mentioned-above methods in an efficient and elegant way. However, this state-of-the-art method requires prior knowledge about the diffraction distance, which results in time-consuming and low accuracy. In other sense, telecentric technology can realize non-diffractive imaging without the knowledge about the diffraction distance or spherical aberration or defocusing aberration. Therefore, in this paper, a novel in-line-and-off-axis hybrid digital holography is proposed by introducing telecentric imaging architecture, and the corresponding reconstruction method is further proposed by utilizing constrained iterative approach. In this method, telecentric in-line-and-off-axis hybrid digital holography is first used to acquire focused off-axis and in-line holograms, respectively. The low resolution phase information is reconstructed from the off-axis hologram by using Fourier transform method with the help of the sample-free off-axis hologram, and then multiplexed with the amplitude information obtained from the in-line hologram to act as the initial complex amplitude in the iterative recovery process. As a result, constrained iterations are carried out in the spatial domain and frequency domain to realize high resolution and high speed reconstruction. After simulations, we build an experimental setup and demonstrate the operation of the method with USAF resolution target, onion cells and bee wings. Both the simulation and experimental results show that the proposed method can require no prior knowledge to suppress the phase disturbance caused by the unwanted image terms and optical aberrations, resulting in high speed and full utilization of spatial bandwidth product of the digital camera to yield high resolution reconstruction. We hope that the proposed method will have most practical applications in the case where large resolution, high speed and good quality are needed.
      Corresponding author: Shan Ming-Guang, smgsir@gmail.com ; Liu Lei, liulei2015@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61775046), the Natural Science Foundation of Heilongjiang Province, China (Grant No. LC2018027), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 3072021CF0803, 3072021CFJ0801, 3072021CFT0803)
    [1]

    Schnars U, Juptner W 1994 Appl. Opt. 33 179Google Scholar

    [2]

    Wang Z, Millet L J, Gillette M U, Popescu G 2008 Opt. Lett. 33 1270Google Scholar

    [3]

    Aguilar J C, Raul Berriel-Valdos L, Felix Aguilar J 2013 Opt. Eng. 52 104103Google Scholar

    [4]

    Kemper B, Vollmer A, Rommel C E, Schnekenburger J, Von B G, Biomed J 2011 J. Biomed. Opt. 16 026014Google Scholar

    [5]

    Zhao W Q, Qiu L R, Xiao Y, Yang J M 2016 Opt. Express 24 22813Google Scholar

    [6]

    Donnarumma D, Brodoline A, Alexandre D 2016 Opt. Express 24 26887Google Scholar

    [7]

    Zhang J W, Dai S Q, Ma C J, Di J L, Zhao J L 2017 Opt. Lett. 42 3462Google Scholar

    [8]

    Yang W J, Liu X J, Lu W L, Guo X T, Popescu G 2018 Precis. Eng. 51 348Google Scholar

    [9]

    Qiu L R, Wang Y, Wu H X, Sun Y B, Cui H, Zhao W Q, Yuan L, Zhan C L 2018 Opt. Express 26 2314Google Scholar

    [10]

    Hu C F, Zhu S S, Gao L 2018 Opt. Lett. 43 3373Google Scholar

    [11]

    周宏强, 万玉红, 满天龙 2018 物理学报 67 044202Google Scholar

    Zhou H Q, Wan Y H, Man T L 2018 Acta Phys. Sin. 67 044202Google Scholar

    [12]

    张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才 2020 物理学报 69 164201Google Scholar

    Zhang Y Y, Wu J C, Hao R, Jin S Z, Cao L C 2020 Acta Phys. Sin. 69 164201Google Scholar

    [13]

    Liu J Q, Zhu L Q, Zhang F, Dong M L, Qu X H 2019 Appl. Opt. 58 4042Google Scholar

    [14]

    王华英, 刘飞飞, 宋修法, 廖微, 赵宝群, 于梦杰, 刘佐强 2013 物理学报 62 024207Google Scholar

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207Google Scholar

    [15]

    Cuche E, Marquet P, Depeursinge C 1999 Appl. Opt. 38 6994Google Scholar

    [16]

    Pham H V, Edwards C, Lynford L G, Popescu G 2013 Appl. Opt. 52 A97Google Scholar

    [17]

    Gao P, Harder I, Nercissian V, Mantel K, Yao B 2010 Opt. Lett. 35 712Google Scholar

    [18]

    Bai H Y, Shan M G, Zhong Z, Guo L L, Zhang Y B 2015 Appl. Opt. 54 9513Google Scholar

    [19]

    Yamaguchi I, Zhang T 1997 Opt. Lett. 22 1268Google Scholar

    [20]

    Oshima T, Matsudo Y, Kakue T, Arai D, Shimobaba T, Ito T 2015 Opt. Commun. 350 270Google Scholar

    [21]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [22]

    Fienup J 1982 Appl. Opt. 21 2758Google Scholar

    [23]

    Latychevskaia T, Fink H W 2007 Phy. Rev. Lett. 98 233901Google Scholar

    [24]

    Rong L, Li Y, Liu S, Xiao W, Pan F, Wang D Y 2013 Opt. Laser Eng. 51 553Google Scholar

    [25]

    Yang G Z, Dong B Z, Gu B Y, Zhuang J Y, Ersoy O K 1994 Appl. Opt. 33 209Google Scholar

    [26]

    Zhang W H, Cao L C, David J B, Zhang H, Cang J, Jin G F 2018 Phy. Rev. Lett. 121 093902Google Scholar

    [27]

    Orzó L 2015 Opt. Express 23 16638Google Scholar

    [28]

    王凤鹏, 王大勇, 王云新, 戎路, 赵洁 2018 中国激光 45 0609001Google Scholar

    Wang F P, Wang D Y, Wang Y X, Rong L, Zhao J 2018 Chinese Journal of Lasers 45 0609001Google Scholar

    [29]

    Khare K, Ali P T S, Joseph J 2013 Opt. Express 21 5634Google Scholar

    [30]

    Wu X Y, Yu Y J, Zhou W J 2014 Opt. Express 22 19860Google Scholar

    [31]

    Zhong M, Cui J, Hyun J S, Pan L, Duan P, Zhang S 2020 Meas. Sci. Technol. 31 085003Google Scholar

    [32]

    Sanchez-Ortiga E, Ferraro P, Martinez-Corral M 2011 Opt. Soc. Am. A 28 1410Google Scholar

    [33]

    Zhong Z, Bai H Y, Shan M G, Zhang Y B, Guo L L 2017 Opt. Laser Eng. 97 9Google Scholar

    [34]

    Hao B G, Shan M G, Zhong Z, Diao M, Wang Y, Zhang Y B 2015 J. Opt. 17 035602Google Scholar

  • 图 1  远心同-离轴混合数字全息成像系统示意图

    Figure 1.  Schematic of the telecentric in-line-and-off-axis hybrid digital holography system.

    图 2  远心同-离轴混合数字全息重建算法框图

    Figure 2.  Schematic of telecentric in-line-and-off-axis hybrid digital holographic reconstruction algorithm.

    图 3  (a)同轴全息图; (b)离轴全息图

    Figure 3.  (a) In-line hologram; (b) off-axis hologram.

    图 4  同轴全息图再现结果 (a)振幅像; (b)相位像

    Figure 4.  Reconstructed results of in-line hologram: (a) Amplitude image; (b) phase image.

    图 5  离轴全息图再现结果 (a)振幅像; (b)相位像

    Figure 5.  Reconstructed results of off-axis hologram: (a) Amplitude image; (b) phase image.

    图 6  再现像误差随迭代次数变化 (a)振幅均方误差收敛曲线; (b)相位均方误差收敛曲线

    Figure 6.  Mean squared errors at each iteration: (a) Amplitude mean square error convergence curve; (b) phase mean square error convergence curve.

    图 7  同-离轴混合数字全息再现结果 (a)振幅像; (b)相位像

    Figure 7.  Reconstructed results obtained by the in-line-and-off-axis hybrid digital holography: (a) Amplitude image; (b) phase image.

    图 8  USAF分辨率板实验结果 (a)同轴全息图; (b)离轴全息图; (c) 同轴数字全息再现像; (d)离轴数字全息再现像; (e)同-离轴混合数字全息再现像

    Figure 8.  Experimental results of USAF resolution target: (a) In-line hologram; (b) off-axis hologram; (c) amplitude reconstructed image of the in-line hologram; (d) amplitude reconstructed image of the off-axis hologram; (e) amplitude reconstructed image of the in-line-and-off-axis hybrid digital holography.

    图 9  洋葱表皮细胞实验结果 (a)同轴全息图; (b)离轴全息图; (c)同轴数字全息再现强度像; (d)同轴数字全息再现相位像; (e) 离轴数字全息再现强度像; (f) 离轴数字全息再现相位像; (g) 混合数字全息再现强度像; (h) 混合数字全息再现相位像; (i)相位剖面曲线

    Figure 9.  Experimental results of onion epidermal cell: (a) In-line hologram; (b) off-axis hologram; (c) amplitude reconstructed image of the in-line hologram; (d) phase reconstructed image of the in-line hologram; (e) amplitude reconstructed image of the off-axis hologram; (f) phase reconstructed image of the off-axis hologram; (g) amplitude reconstructed image of the in-line-and-off-axis hybrid digital holography; (h) phase reconstructed image of the in-line-and-off-axis hybrid digital holography; (i) phase profile curves.

    图 10  蜜蜂翅膀实验结果 (a)同轴全息图; (b)离轴全息图; (c)同轴数字全息再现强度像; (d)同轴数字全息再现相位像; (e) 离轴数字全息再现强度像; (f) 离轴数字全息再现相位像; (g) 混合数字全息再现强度像; (h) 混合数字全息再现相位像; (i)相位剖面曲线

    Figure 10.  Experimental results of bee wings: (a) In-line hologram; (b) off-axis hologram; (c) amplitude reconstructed image of the in-line hologram; (d) phase reconstructed image of the in-line hologram; (e) amplitude reconstructed image of the off-axis hologram; (f) phase reconstructed image of the off-axis hologram; (g) amplitude reconstructed image of the in-line-and-off-axis hybrid digital holography; (h) phase reconstructed image of the in-line-and-off-axis hybrid digital holography; (i) phase profile curves

    表 1  不同算法重建振幅和相位的峰值信噪比

    Table 1.  Peak signal-to-noise ratio (PSNR) of amplitudes and phases reconstructed by different algorithms.

    同轴算法离轴算法混合算法
    振幅PSNR/dB71.5566.5482.37
    相位PSNR/dB43.6955.2957.70
    DownLoad: CSV
  • [1]

    Schnars U, Juptner W 1994 Appl. Opt. 33 179Google Scholar

    [2]

    Wang Z, Millet L J, Gillette M U, Popescu G 2008 Opt. Lett. 33 1270Google Scholar

    [3]

    Aguilar J C, Raul Berriel-Valdos L, Felix Aguilar J 2013 Opt. Eng. 52 104103Google Scholar

    [4]

    Kemper B, Vollmer A, Rommel C E, Schnekenburger J, Von B G, Biomed J 2011 J. Biomed. Opt. 16 026014Google Scholar

    [5]

    Zhao W Q, Qiu L R, Xiao Y, Yang J M 2016 Opt. Express 24 22813Google Scholar

    [6]

    Donnarumma D, Brodoline A, Alexandre D 2016 Opt. Express 24 26887Google Scholar

    [7]

    Zhang J W, Dai S Q, Ma C J, Di J L, Zhao J L 2017 Opt. Lett. 42 3462Google Scholar

    [8]

    Yang W J, Liu X J, Lu W L, Guo X T, Popescu G 2018 Precis. Eng. 51 348Google Scholar

    [9]

    Qiu L R, Wang Y, Wu H X, Sun Y B, Cui H, Zhao W Q, Yuan L, Zhan C L 2018 Opt. Express 26 2314Google Scholar

    [10]

    Hu C F, Zhu S S, Gao L 2018 Opt. Lett. 43 3373Google Scholar

    [11]

    周宏强, 万玉红, 满天龙 2018 物理学报 67 044202Google Scholar

    Zhou H Q, Wan Y H, Man T L 2018 Acta Phys. Sin. 67 044202Google Scholar

    [12]

    张益溢, 吴佳琛, 郝然, 金尚忠, 曹良才 2020 物理学报 69 164201Google Scholar

    Zhang Y Y, Wu J C, Hao R, Jin S Z, Cao L C 2020 Acta Phys. Sin. 69 164201Google Scholar

    [13]

    Liu J Q, Zhu L Q, Zhang F, Dong M L, Qu X H 2019 Appl. Opt. 58 4042Google Scholar

    [14]

    王华英, 刘飞飞, 宋修法, 廖微, 赵宝群, 于梦杰, 刘佐强 2013 物理学报 62 024207Google Scholar

    Wang H Y, Liu F F, Liao W, Song X F, Yu M J, Liu Z Q 2013 Acta Phys. Sin. 62 024207Google Scholar

    [15]

    Cuche E, Marquet P, Depeursinge C 1999 Appl. Opt. 38 6994Google Scholar

    [16]

    Pham H V, Edwards C, Lynford L G, Popescu G 2013 Appl. Opt. 52 A97Google Scholar

    [17]

    Gao P, Harder I, Nercissian V, Mantel K, Yao B 2010 Opt. Lett. 35 712Google Scholar

    [18]

    Bai H Y, Shan M G, Zhong Z, Guo L L, Zhang Y B 2015 Appl. Opt. 54 9513Google Scholar

    [19]

    Yamaguchi I, Zhang T 1997 Opt. Lett. 22 1268Google Scholar

    [20]

    Oshima T, Matsudo Y, Kakue T, Arai D, Shimobaba T, Ito T 2015 Opt. Commun. 350 270Google Scholar

    [21]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [22]

    Fienup J 1982 Appl. Opt. 21 2758Google Scholar

    [23]

    Latychevskaia T, Fink H W 2007 Phy. Rev. Lett. 98 233901Google Scholar

    [24]

    Rong L, Li Y, Liu S, Xiao W, Pan F, Wang D Y 2013 Opt. Laser Eng. 51 553Google Scholar

    [25]

    Yang G Z, Dong B Z, Gu B Y, Zhuang J Y, Ersoy O K 1994 Appl. Opt. 33 209Google Scholar

    [26]

    Zhang W H, Cao L C, David J B, Zhang H, Cang J, Jin G F 2018 Phy. Rev. Lett. 121 093902Google Scholar

    [27]

    Orzó L 2015 Opt. Express 23 16638Google Scholar

    [28]

    王凤鹏, 王大勇, 王云新, 戎路, 赵洁 2018 中国激光 45 0609001Google Scholar

    Wang F P, Wang D Y, Wang Y X, Rong L, Zhao J 2018 Chinese Journal of Lasers 45 0609001Google Scholar

    [29]

    Khare K, Ali P T S, Joseph J 2013 Opt. Express 21 5634Google Scholar

    [30]

    Wu X Y, Yu Y J, Zhou W J 2014 Opt. Express 22 19860Google Scholar

    [31]

    Zhong M, Cui J, Hyun J S, Pan L, Duan P, Zhang S 2020 Meas. Sci. Technol. 31 085003Google Scholar

    [32]

    Sanchez-Ortiga E, Ferraro P, Martinez-Corral M 2011 Opt. Soc. Am. A 28 1410Google Scholar

    [33]

    Zhong Z, Bai H Y, Shan M G, Zhang Y B, Guo L L 2017 Opt. Laser Eng. 97 9Google Scholar

    [34]

    Hao B G, Shan M G, Zhong Z, Diao M, Wang Y, Zhang Y B 2015 J. Opt. 17 035602Google Scholar

  • [1] Zhang Yi-Yi, Wu Jia-Chen, Hao Ran, Jin Shang-Zhong, Cao Liang-Cai. Digital holographic microscopy for red blood cell imaging. Acta Physica Sinica, 2020, 69(16): 164201. doi: 10.7498/aps.69.20200357
    [2] Liu Fei, Wei Ya-Zhe, Han Ping-Li, Liu Jia-Wei, Shao Xiao-Peng. Design of monocentric wide field-of-view and high-resolution computational imaging system. Acta Physica Sinica, 2019, 68(8): 084201. doi: 10.7498/aps.68.20182229
    [3] Wang Xue-Guang, Li Ming, Yu Na-Na, Xi Si-Xing, Wang Xiao-Lei, Lang Li-Ying. Multiple-image encryption method based on spatial angle multiplexing and double random phase encoding. Acta Physica Sinica, 2019, 68(24): 240503. doi: 10.7498/aps.68.20191362
    [4] Xie Jing, Zhang Jun-Yong, Yue Yang, Zhang Yan-Li. Focusing properties of Lucas sieves. Acta Physica Sinica, 2018, 67(10): 104201. doi: 10.7498/aps.67.20172260
    [5] Zhou Hong-Qiang, Wan Yu-Hong, Man Tian-Long. Adaptive imaging by incoherent digital holography based on phase change. Acta Physica Sinica, 2018, 67(4): 044202. doi: 10.7498/aps.67.20172202
    [6] Gu Ting-Ting, Huang Su-Juan, Yan Cheng, Miao Zhuang, Chang Zheng, Wang Ting-Yun. Refractive Index Measurement Research for Optical Fiber Based on Digital Hologram. Acta Physica Sinica, 2015, 64(6): 064204. doi: 10.7498/aps.64.064204
    [7] Wang Lin, Yuan Cao-Jin, Nie Shou-Ping, Li Chong-Guang, Zhang Hui-Li, Zhao Ying-Chun, Zhang Xiu-Ying, Feng Shao-Tong. Measuring topology charge of vortex beam using digital holography. Acta Physica Sinica, 2014, 63(24): 244202. doi: 10.7498/aps.63.244202
    [8] Wang Da-Yong, Wang Yun-Xin, Guo Sha, Rong Lu, Zhang Yi-Zhuo. Research on speckle denoising by lensless Fourier transform holographic imaging with angular diversity. Acta Physica Sinica, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [9] Lu Ming-Feng, Wu Jian, Zheng Ming. The production mechanism of image periodicity in digital holography and its application in zero-order noise suppression. Acta Physica Sinica, 2013, 62(9): 094207. doi: 10.7498/aps.62.094207
    [10] Li Jun-Chang, Lou Yu-Li, Gui Jin-Bin, Peng Zu-Jie, Song Qing-He. Simplified sampling models for digital hologram. Acta Physica Sinica, 2013, 62(12): 124203. doi: 10.7498/aps.62.124203
    [11] Ma Jun, Yuan Cao-Jin, Feng Shao-Tong, Nie Shou-Ping. Full-field detection of polarization state based on multiplexing digital holography. Acta Physica Sinica, 2013, 62(22): 224204. doi: 10.7498/aps.62.224204
    [12] Li Jun-Chang. Focal depth research of digital holographic reconstructed image. Acta Physica Sinica, 2012, 61(13): 134203. doi: 10.7498/aps.61.134203
    [13] Chen Ping, Tang Zhi-Lie, Wang Juan, Fu Xiao-Di, Chen Fei-Hu. Analysis of digital in-line polarization holography by Stokes parameters. Acta Physica Sinica, 2012, 61(10): 104202. doi: 10.7498/aps.61.104202
    [14] Xu Xian-Feng, Han Li-Li, Yuan Hong-Guang. Analysis and correction of object wavefront reconstruction errorsin two-step phase-shifting interferometry. Acta Physica Sinica, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [15] Cui Hua-Kun, Wang Da-Yong, Wang Yun-Xin, Liu Chang-Geng, Zhao Jie, Li Yan. Automatic procedure for non-coplanar aberration compensation in lensless Fourier transform digital holography. Acta Physica Sinica, 2011, 60(4): 044201. doi: 10.7498/aps.60.044201
    [16] Huo Bing-Zhong, Yuan Jing-He, Shang Ying, Meng Chun-Ning. Spherical superlens analysed by dyadic Green’s function. Acta Physica Sinica, 2010, 59(11): 8178-8183. doi: 10.7498/aps.59.8178
    [17] Zhao Gui-Min, Lu Ming-Zhu, Wan Ming-Xi, Fang Li. Study of vibro-acoustography with high spatial resolution based on sector array transducers. Acta Physica Sinica, 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [18] Xiang Liang-Zhong, Xing Da, Guo Hua, Yang Si-Hua. High resolution fast digital photoacoustic CT for breast cancer diagnosis. Acta Physica Sinica, 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [19] Li Jun-Chang, Zhang Ya-Ping, Xu Wei. High quality digital holographic wave-front reconstruction system. Acta Physica Sinica, 2009, 58(8): 5385-5391. doi: 10.7498/aps.58.5385
    [20] Shen Jin-Yuan, Li Xian-Guo, Chang Sheng-Jiang, Zhang Yan-Xin. Application of phase features in recognizing 3-D objects. Acta Physica Sinica, 2005, 54(11): 5157-5163. doi: 10.7498/aps.54.5157
Metrics
  • Abstract views:  4241
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  26 January 2021
  • Accepted Date:  18 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回