Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X-rays produced by interaction of Xe20+ with different targets in Bragg peak energy region

Liang Chang-Hui Zhang Xiao-An Zhou Xian-Ming Zhao Yong-Tao Xiao Guo-Qing

Citation:

X-rays produced by interaction of Xe20+ with different targets in Bragg peak energy region

Liang Chang-Hui, Zhang Xiao-An, Zhou Xian-Ming, Zhao Yong-Tao, Xiao Guo-Qing
PDF
HTML
Get Citation
  • The inner shell process produced by the collision of highly charged ion with medium atoms near the Bragg peak is an important frontier area of atomic physics under extreme conditions such as celestial plasmas and controlled nuclear fusion plasmas. Because of the special complexity of the inner shell process produced by the collision of ions with atoms in the Bragg peak energy region and the relevant experimental research is less, limited by the experimental conditions, there remain some interesting and unanswered questions.We report the experimental data of X-ray spectra produced by the impact of Xe20+ with 6.0 MeV kinetic energy on V, Fe, Ni, Cu, and Zn surface in the National Laboratory of Heavy Ion Research Facility in Lanzhou, China. The generation mechanism of X-ray with energy of 1.60 keV is analyzed. The results show that when Xe20+ without initial holes interacts with different targets, the Mα X-ray of Xe is not observed, but X-ray with energy twice as great as that of Xe Mα X-ray is observed in the experiment, which is called Xe Mαα X-ray and considered to be generated by the two-electron-one-photon process of Xe on the upper surface of the target. The existence time of the first-generation hollow atoms on the upper surface is calculated by using the classical over-barrier model when Xe20+ interacts with different targets, which is consistent with the variation of Mαα X-ray yield with the atomic number of target, therefore it is further proved that Mαα X-ray is formed by the two-electron one-photon process of Xe on the upper surface of the target. Of course, this conclusion needs further analyzing and verifying with more experimental data.
      Corresponding author: Zhang Xiao-An, zhangxiaoan2000@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505248, 11605147) and the Natural Science Basic Research Plan in Shaanxi Province, China (Grant No. 2020JM-624)
    [1]

    Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar

    [2]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [3]

    Harsh M, Arvind K J, Mandeep K, Parjit S S, Sunita H 2014 Nucl. Instrum. Methods B 332 103Google Scholar

    [4]

    Bertol A P L, Trincavelli J, Hinrichs R, Vasconcellos M A Z 2014 Nucl. Instrum. Methods B 318 19Google Scholar

    [5]

    Watanabe H, Sun J, Tona M, Nakamura N, Sakurai M, Yamada C, Yoshiyasu N, Ohtani S 2007 Phys. Rev. A 75 062901Google Scholar

    [6]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [7]

    张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 物理学报 69 213301Google Scholar

    Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, W Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar

    [8]

    Yamazaki Y, 2002 Nucl. Instrum. Methods B 193 516Google Scholar

    [9]

    Winter H P, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R39Google Scholar

    [10]

    Lapicki G, Ramana Murty G A V, Naga Raju G J, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [11]

    Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar

    [12]

    Ouzina S, Amokrane A, Toumert I 2008 Nucl. Instrum. Methods B 266 1209Google Scholar

    [13]

    Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar

    [14]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [15]

    Garcia J D, Fortner R J, and Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar

    [16]

    Brandt W, Lapicki G 1974 Phys. Rev. A 10 474Google Scholar

    [17]

    Halpern A M, Law J, 1973 Phys. Rev. Lett. 31 4

    [18]

    Zhang X A, Zhao Y T, Hoffmann D H H, Yang Z H, Chen X M, Xu Z F, Li F L, Xiao G Q 2011 Laser Part. Beams 29 265Google Scholar

    [19]

    Zhao Y T, Xiao G Q, Zhang X A, Ya ng, Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods B 258 121Google Scholar

    [20]

    Zhou X M, Zhao Y T, Ren J R, Cheng R, Lei Y, Sun Y B, Xu G, Wang Y Y, Liu S D Xiao G Q 2013 Chin. Phys. B 22 113402Google Scholar

    [21]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [22]

    X-RAY DATA BOOKLET, Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory [EB/OL] http://xdb.lbl.gov/[2020-07-09]

    [23]

    Schuch R, Schneider D, Knapp D A, DeWitt D, McDonald J, Chen M H, Clark M W, Marrs R E 1993 Phys. Rev. Lett. 70 1073Google Scholar

    [24]

    Schuch R, Madzunkov S, Lindroth E, Fry D 2000 Phys. Rev. Lett. 85 5559Google Scholar

    [25]

    董志强, 周书华, 李景文, 胡爱东, 叶宗垣 1990 原子与分子物理学报 7 S1-241

    Dong Z Q, Zhou S H, Ling J W, Hu A D, Ye Z Y 1990 J. Atom. Mol. Phys. 7 S1-241

  • 图 1  实验平台示意图 (1, ECR离子源; 2, 分析磁体; 3, 高压加速平台; 4, 四级光阑; 5, 90°分析磁体; 6, 四极透镜; 7, 60°分析磁体; 8, 超高真空球形靶室; 9, 靶; 10, 硅漂移探测器; 11, X射线获取系统; 12, 穿透式法拉第圆筒; 13, 法拉第圆筒; 14, 离子数获取系统)

    Figure 1.  Schematic drawing of experiment setup. 1, ECR ion source; 2, analyzing magnet; 3, high volt accelerate platform; 4, four-stage aperture; 5, 90° deflection magnet; 6, magnetic quadrupled lens; 7, 60° deflection magnet; 8, ultrahigh vacuum target chamber; 9, target; 10, silicon drift detector; 11, X-ray recording system; 12, penetrable faraday cup; 13, common faraday cup; 14, projectile number recording system.

    图 2  探测器的探测效率图

    Figure 2.  Efficiency values of the detector.

    图 3  动能为6.0 MeV的Xe20+离子与不同靶相互作用产生的特征X射线谱 (a) V; (b) Fe; (c) Ni; (d) Cu; (e) Zn

    Figure 3.  Characteristic of X-ray spectra induced by the impact of Xe20 ion with 6.0 MeV kinetic energy on different target surface: (a) V; (b) Fe; (c) Ni; (d) Cu; (e) Zn.

    图 4  Xe 的Mαα X射线产额与靶原子序数的关系

    Figure 4.  Relation between relative yield of Xe Mαα X ray and target atomic number.

    图 5  第一代空心原子在上表面的存在时间与靶原子序数的关系

    Figure 5.  Relation between flight time of the first hollow atoms and target atomic number.

    表 1  6.0 MeV的Xe20+离子与不同靶作用产生的第一代空心原子在上表面的存在时间

    Table 1.  Flight time of the first hollow atoms from 6.0 MeV Xe20+ ions above the different target.

    功函数W/eV能量增益ΔE/eV临界距离Rc/arb.units存在时间
    t/10–16 s
    V 4.30 68.00 40.40 7.16
    Fe 4.50 71.15 38.61 6.84
    Ni 5.15 81.43 33.74 5.98
    Cu 4.65 73.52 37.36 6.62
    Zn 4.33 68.46 40.12 7.11
    DownLoad: CSV
  • [1]

    Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402Google Scholar

    [2]

    Song Z Y, Yang Z H, Zhang H Q, Shao J X, Cui Y, Zhang Y P, Zhang X A, Zhao Y T, Chen X M, Xiao G Q 2015 Phys. Rev. A 91 042707Google Scholar

    [3]

    Harsh M, Arvind K J, Mandeep K, Parjit S S, Sunita H 2014 Nucl. Instrum. Methods B 332 103Google Scholar

    [4]

    Bertol A P L, Trincavelli J, Hinrichs R, Vasconcellos M A Z 2014 Nucl. Instrum. Methods B 318 19Google Scholar

    [5]

    Watanabe H, Sun J, Tona M, Nakamura N, Sakurai M, Yamada C, Yoshiyasu N, Ohtani S 2007 Phys. Rev. A 75 062901Google Scholar

    [6]

    梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 物理学报 66 143401Google Scholar

    Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar

    [7]

    张小安, 梅策香, 张颖, 梁昌慧, 周贤明, 曾利霞, 李耀宗, 柳钰, 向前兰, 孟惠, 王益军 2020 物理学报 69 213301Google Scholar

    Zhang X A, Mei C X, Zhang Y, Liang C H, Zhou X M, Zeng L X, Li Y Z, Liu Y, Xiang Q L, Meng H, W Wang Y J 2020 Acta Phys. Sin. 69 213301Google Scholar

    [8]

    Yamazaki Y, 2002 Nucl. Instrum. Methods B 193 516Google Scholar

    [9]

    Winter H P, Aumayr F 1999 J. Phys. B: At. Mol. Opt. Phys. 32 R39Google Scholar

    [10]

    Lapicki G, Ramana Murty G A V, Naga Raju G J, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718Google Scholar

    [11]

    Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709Google Scholar

    [12]

    Ouzina S, Amokrane A, Toumert I 2008 Nucl. Instrum. Methods B 266 1209Google Scholar

    [13]

    Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar

    [14]

    Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar

    [15]

    Garcia J D, Fortner R J, and Kavanagh T M 1973 Rev. Mod. Phys. 45 111Google Scholar

    [16]

    Brandt W, Lapicki G 1974 Phys. Rev. A 10 474Google Scholar

    [17]

    Halpern A M, Law J, 1973 Phys. Rev. Lett. 31 4

    [18]

    Zhang X A, Zhao Y T, Hoffmann D H H, Yang Z H, Chen X M, Xu Z F, Li F L, Xiao G Q 2011 Laser Part. Beams 29 265Google Scholar

    [19]

    Zhao Y T, Xiao G Q, Zhang X A, Ya ng, Z H, Zhang Y P, Zhan W L, Chen X M, Li F L 2007 Nucl. Instrum. Methods B 258 121Google Scholar

    [20]

    Zhou X M, Zhao Y T, Ren J R, Cheng R, Lei Y, Sun Y B, Xu G, Wang Y Y, Liu S D Xiao G Q 2013 Chin. Phys. B 22 113402Google Scholar

    [21]

    梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青 2018 物理学报 67 243201Google Scholar

    Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar

    [22]

    X-RAY DATA BOOKLET, Center for X-ray Optics and Advanced Light Source, Lawrence Berkeley National Laboratory [EB/OL] http://xdb.lbl.gov/[2020-07-09]

    [23]

    Schuch R, Schneider D, Knapp D A, DeWitt D, McDonald J, Chen M H, Clark M W, Marrs R E 1993 Phys. Rev. Lett. 70 1073Google Scholar

    [24]

    Schuch R, Madzunkov S, Lindroth E, Fry D 2000 Phys. Rev. Lett. 85 5559Google Scholar

    [25]

    董志强, 周书华, 李景文, 胡爱东, 叶宗垣 1990 原子与分子物理学报 7 S1-241

    Dong Z Q, Zhou S H, Ling J W, Hu A D, Ye Z Y 1990 J. Atom. Mol. Phys. 7 S1-241

  • [1] Shi Lu-Lin, Cheng Rui, Wang Zhao, Cao Shi-Quan, Yang Jie, Zhou Ze-Xian, Chen Yan-Hong, Wang Guo-Dong, Hui De-Xuan, Jin Xue-Jian, Wu Xiao-Xia, Lei Yu, Wang Yu-Yu, Su Mao-Gen. Experimental setup for interaction between highly charged ions and laser-produced plasma near Bohr velocity energy region. Acta Physica Sinica, 2023, 72(13): 133401. doi: 10.7498/aps.72.20230214
    [2] Zhou Xian-Ming, Wei Jing, Cheng Rui, Mei Ce-Xiang, Zeng Li-Xia, Wang Xing, Liang Chang-Hui, Zhao Yong-Tao, Zhang Xiao-An. W L-shell X-ray emission induced by C6+ ions with several hundred MeV/u. Acta Physica Sinica, 2022, 71(11): 113201. doi: 10.7498/aps.70.20212322
    [3] Zhou Xian-Ming,  Wei Jing,  Cheng Rui,  Mei Ce-Xiang,  Zeng Li-Xia,  Wang Xing,  Liang Chang-Hui,  Zhao Yong-Tao,  Zhang Xiao-An. W L-shell X-ray emission induced by C6+ions in the energy range of several hundred MeV/u. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212322
    [4] Zhang Bing-Zhang,  Song Zhang-Yong,  Zhang Ming-Wu,  Liu Xuan,  Qian Cheng,  Fang Xin,  Shao Chao-Jie,  Wang Wei,  Liu Jun-Liang,  Zhu Zhi-Chao,  Sun Liang-Ting,  Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [5] Zhang Bing-Zhang, Song Zhang-Yong, Zhang Ming-Wu, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Zhu Zhi-Chao, Sun Liang-Ting, Yu De-Yang. Theoretical and experimental studies on the captured electron population probability of hydrogen-like O and N ions in collision with Al surface. Acta Physica Sinica, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [6] Zhang Bing-Zhang, Song Zhang-Yong, Liu Xuan, Qian Cheng, Fang Xing, Shao Cao-Jie, Wang Wei, Liu Jun-Liang, Xu Jun-Kui, Feng Yong, Zhu Zhi-Chao, Guo Yan-Ling, Chen Lin, Sun Liang-Ting, Yang Zhi-Hu, Yu De-Yang. X-ray emission produced by interaction of slow highly charged ${\boldsymbol{ {\rm{O}}^{q+}}}$ ions with Al surfaces. Acta Physica Sinica, 2021, 70(19): 193201. doi: 10.7498/aps.70.20210757
    [7] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Zhou Xian-Ming, Xiao Guo-Qing. Study of X-ray spectrum emitted due to the impact of 129Xeq+ on different ion's charge on Au. Acta Physica Sinica, 2015, 64(5): 053201. doi: 10.7498/aps.64.053201
    [8] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xe26+ of the different kinetic energies on Au surface. Acta Physica Sinica, 2014, 63(16): 163201. doi: 10.7498/aps.63.163201
    [9] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Mei Ce-Xiang, Cheng Rui, Zhou Xian-Ming, Lei Yu, Wang Xing, Sun Yuan-Bo, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 152Eu20+ of near Bohn velocity on Au surface. Acta Physica Sinica, 2013, 62(6): 063202. doi: 10.7498/aps.62.063202
    [10] Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Liang Chang-Hui, Cheng Rui, Zhou Xian-Ming, Wang Xing, Lei Yu, Sun Yuan-Bo, Xu Ge, Li Jin-Yu, Xiao Guo-Qing. Thresholds for kinetic and potential energies of Arq+ induced Au target atomic M-X rays emission. Acta Physica Sinica, 2012, 61(11): 113401. doi: 10.7498/aps.61.113401
    [11] Li Yao-Zong, Zhang Xiao-An, Liang Chang-Hui, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Wang Xing, Lei Yu, Sun Yuan-Bo, Xu Ge. Au L X-ray and Xe M X-ray emission following 129Xe30+ ion impact on Au surface. Acta Physica Sinica, 2012, 61(6): 063201. doi: 10.7498/aps.61.063201
    [12] Wang Xing, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Xu Ge, Sun Yuan-Bo, Lei Yu, Wang Yu-Yu, Ren Jie-Ru, Yu Yang, Li Yong-Feng, Zhang Xiao-An, Li Yao-Zong, Liang Chang-Hui, Xiao Guo-Qing. Multiple ionization effect of Ta induced by heavy ions. Acta Physica Sinica, 2012, 61(19): 193201. doi: 10.7498/aps.61.193201
    [13] Zou Xian-Rong, Shao Jian-Xiong, Chen Xi-Meng, Cui Ying. Kβ/Kα ratios and energies of the K-shell X-ray of Ar17+ ion in the interaction with metals. Acta Physica Sinica, 2010, 59(9): 6064-6070. doi: 10.7498/aps.59.6064
    [14] Liang Chang-Hui, Zhang Xiao-An, Li Yao-Zong, Zhao Yong-Tao, Xiao Guo-Qing. X-ray spectrum emitted by the impact of 129Xeq+ on Mo surface. Acta Physica Sinica, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [15] Zhang Xiao-An, Yang Zhi-Hu, Wang Dang-Chao, Mei Ce-Xiang, Niu Chao-Ying, Wang Wei, Dai Bin, Xiao Guo-Qing. Cobalt-like-Xe-induced infrared light and x-ray emission at Ni surface. Acta Physica Sinica, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [16] Yang Zhi-Hu, Song Zhang-Yong, Cui Ying, Zhang Hong-Qiang, Ruan Fang-Fang, Shao Jian-Xiong, Du Juan, Liu Yu-Wen, Zhu Ke-Xin, Zhang Xiao-An, Shao Cao-Jie, Lu Rong-Chun, Yu De-Yang, Chen Xi-Meng, Cai Xiao-Hong. X-ray spectra produced by interaction of Ar16+ and Ar17+ with Zr. Acta Physica Sinica, 2008, 57(2): 803-807. doi: 10.7498/aps.57.803
    [17] Zhao Yong-Tao, Xiao Guo-Qing, Xu Zhong-Feng, Abdul Qayyum, Wang Yu-Yu, Zhang Xiao-An, Li Fu-Li, Zhan Wen-Long. The electron emission yield induced by the interaction of highly charged argon ions with silicon surface. Acta Physica Sinica, 2007, 56(10): 5734-5738. doi: 10.7498/aps.56.5734
    [18] Wang Yu-Yu, Zhao Yong-Tao, Xiao Guo-Qing, Fang Yan, Zhang Xiao-An, Wang Tie-Shan, Wang Shi-Wei, Peng Hai-Bo. Electron emission induced by the interaction of highly charged ions 207Pbq+(24≤q≤36) with solid surface of Si(110). Acta Physica Sinica, 2006, 55(2): 673-676. doi: 10.7498/aps.55.673
    [19] Yang Zhi-Hu, Song Zhang-Yong, Chen Xi-Meng, Zhang Xiao-An, Zhang Yan-Ping, Zhao Yong-Tao, Cui Ying, Zhang Hong-Qiang, Xu Xu, Shao Jian-Xiong, Yu De-Yang, Cai Xiao-Hong. X-ray emission produced by interaction of highly ionized Arq+ ions with metallic targets. Acta Physica Sinica, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] Zhao Yong-Tao, Xiao Guo-Qing, Zhang Xiao-An, Yang Zhi-Hu, Chen Xi-Meng, Li Fu-Li, Zhang Yan-Ping, Zhang Hong-Qiang, Cui Ying, Shao Jian-Xiong, Xu Xu. The x-ray spectra of hollow atoms. Acta Physica Sinica, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
Metrics
  • Abstract views:  3164
  • PDF Downloads:  51
  • Cited By: 0
Publishing process
  • Received Date:  28 January 2021
  • Accepted Date:  07 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回