Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement

Wang Qian-Jin Sun Peng-Shuai Zhang Zhi-Rong Zhang Le-Wen Yang Xi Wu Bian Pang Tao Xia Hua Li Qi-Yong

Citation:

Separation and analysis method of overlapping absorption spectra with cross interference in gas mixture measurement

Wang Qian-Jin, Sun Peng-Shuai, Zhang Zhi-Rong, Zhang Le-Wen, Yang Xi, Wu Bian, Pang Tao, Xia Hua, Li Qi-Yong
PDF
HTML
Get Citation
  • The interference between overlapping gas absorption lines often occurs in the measurement of multi-component gas mixture with using tunable diode laser absorption spectroscopy (TDLAS). This is also the main problem of the technology in some applications. For instance, in the early application of multi-component gas mixture measurement in coal mines, we found that the absorption lines of carbon monoxide (CO) and methane (CH4) seriously overlapped. The absorption signal of trace CO gas was annihilated and could not be effectively demodulated, especially in the presence of high concentration of CH4. This problem could not be solved just by accurately selecting the spectral lines due to the band absorption of CH4. Therefore, in this paper, we introduce the support vector regression (SVR) model to deal with the interference between CO and CH4 absorption lines. The spectral signals of 14 groups of mixed gases with different concentrations of CO and CH4 are used as the training sets, and the five-fold cross-validation is adopted to prevent the model from overfitting. After 15 iterations in 30 seconds, the optimal regression model of CO and CH4 can be obtained respectively. Furthermore, it is worth noting that based on the experimental data, the linear kernel function is selected to construct the two gas SVR models, and the parameters of the SVR models are optimized by the sequential minimal optimization(SMO) algorithm. With the assistance of the SVR models, the absorption spectra of the two gases can be demodulated effectively, and finally the accurate measurement results are obtained. The measurement results show that the absolute error of trace CO and CH4 concentration(volume fraction of gas) are less than 2 × 10–6 and 0.2 × 10–2 respectively. Meanwhile, the correlation coefficient between the measured values and the actual values of CO and CH4 are 0.998 and 0.9995, respectively. In addition, the dynamic stability for each of the two regression models is fully verified by the experiment of the inflation process. Consequently, this method can eliminate the interference between the overlapping spectra, and can fully meet the requirements for accurately measuring the gas mixture. We hope that the SVR model can provide an effective solution for the real-time monitoring of multi-component gas mixture, and thus greatly improving the adaptability of TDLAS technology in the future.
      Corresponding author: Zhang Zhi-Rong, zhangzr@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874364, 41877311, 42005107), the National Key Research and Development Program of China (Grant No. 2017YFC0805004), the Key Research and Development Projects of Anhui Province, China (Grant No. 201904c03020005), and the "Spark" Fund Project of Hefei Institutes of Physics Science, Chinese Academy Sciences, China (Grant No. YZJJ2020QN8)
    [1]

    Zhang Z R, Pang T, Yang Y, Xia H, Cui X J, Sun P S, Wu B, Wang Y, Sigrist M W, Dong F Z 2016 Opt. Express 24 A943Google Scholar

    [2]

    Wang F P, Chang J, Wang Q, Wei W, Qin Z G 2017 Sens. Actuators A 259 152Google Scholar

    [3]

    Avetisov V, Bjoroey O, Wang J, Geiser P, Paulsen K G 2019 Sensors 19 5313Google Scholar

    [4]

    Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2013 Meas. Sci. Technol. 24 015202Google Scholar

    [5]

    Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081Google Scholar

    [6]

    夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜 2013 物理学报 62 214208Google Scholar

    Xia H, Wu B, Zhang Z R, Pang T, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 214208Google Scholar

    [7]

    Zhang L W, Zhang Z R, Sun P S, Pang T, Xia H, Cui X J, Guo Q, Sigrist M W, Shu C M, Shu Z F 2020 Spectrochim. Acta, Part A 239 118495Google Scholar

    [8]

    He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar

    [9]

    Kluczynski P, Gustafsson J, Lindberg A M, Axner O 2001 Spectrochim. Acta, Part B 56 1277Google Scholar

    [10]

    Wang F, Wu Q, Huang Q X, Zhang H D, Yan J H, Cen K F 2015 Opt. Commun. 346 53Google Scholar

    [11]

    Lin X, Yu X L, Li F, Zhang S H, Xin J G, Chang X Y 2013 Appl. Phys. B: Lasers Opt. 110 401Google Scholar

    [12]

    Köhring M, Huang S, Jahjah M, Jiang W, Ren W, Willer U, Caneba C, Yang L, Nagrath D, Schade W, Tittel F K 2014 Appl. Phys. B 117 445Google Scholar

    [13]

    Zhang T, Kang J, Meng D, Wang H, Mu Z, Zhou M, Zhang X, Chen C 2018 Sensors 18 4295Google Scholar

    [14]

    张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204Google Scholar

    Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204Google Scholar

    [15]

    Gabrysch M, Corsi C, Pavone F S, Inguscio M 1997 Appl. Phys. B 65 75Google Scholar

    [16]

    Cai T D, Gao G Z, Wang M R 2016 Opt. Express 24 859Google Scholar

    [17]

    Malegori C, Marques E J N, Freitas S T d, Pimentel M F, Pasquini C, Casiraghi E 2017 Talanta 165 112Google Scholar

    [18]

    张志荣, 夏滑, 董凤忠, 庞涛, 吴边 2013 光学精密工程 21 2771Google Scholar

    Zhang Z R, Xia H, Dong F Z, Pang T, Wu B 2013 Opt. Precis. Eng. 21 2771Google Scholar

    [19]

    Shao L G, Fang B, Zheng F, Qiu X B, He Q S, Wei J L, Li C L, Zhao W X 2019 Spectrochim. Acta, Part A 222 117118Google Scholar

    [20]

    Qu J, Chen H Y, Liu W Z, Zhang B, Li Z B 2015 Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering Zhengzhou, PRC, April 11−13, 2015 p2111

    [21]

    Laref R, Losson E, Sava A, Adjallah K, Siadat M 2018 2018 Ieee International Conference on Industrial Technology (Icit) Lyon, France, February 19−22, 2018 p1335

    [22]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [23]

    Smola A J, Scholkopf B 2004 Stat. Comput. 14 199Google Scholar

    [24]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

  • 图 1  DFB激光器电流-波长调谐性能曲线

    Figure 1.  Current-wavelength tuning curve of DFB laser.

    图 2  实验系统原理图

    Figure 2.  Schematic diagram of the experimental system.

    图 3  CO (20 × 10–6, 400 × 10–6)和CH4 (1 × 10–2)的模拟吸收光谱图

    Figure 3.  Simulated absorption spectra of CO (20 × 10–6, 400 × 10–6) and CH4 (1 × 10–2).

    图 4  三组气体(Group 1、Group 4、Group 10)的2f/1f信号

    Figure 4.  2f/1f signals of three groups of gases (Group 1, Group 4, Group 10).

    图 5  CO和CH4浓度设置值和测试值对比 (a) CO浓度值; (b) CH4浓度值

    Figure 5.  Comparisons between set and test values: (a) CO concentration; (b) CH4 concentration.

    图 6  设置值和测量值之间相关性及测量误差 (a) CO相关性; (b) CH4相关性; (c) CO测量误差; (d) CH4测量误差

    Figure 6.  Correlation and test errors between set and average values: (a) CO correlation; (b) CH4 correlation; (c) CO errors; (d) CH4 errors.

    图 7  不同浓度CH4对CO测量结果的干扰

    Figure 7.  Interference on CO measurement results by different concentrations of CH4.

    图 8  第一组充气过程中CO和CH4浓度变化

    Figure 8.  Concentration measured of CO and CH4 during the first set of inflation.

    图 9  第二组充气过程中CO和CH4浓度变化

    Figure 9.  Concentration measured of CO and CH4 during the second set of inflation.

    表 1  训练数据集

    Table 1.  Training data set.

    Group
    Standard gas
    category and
    concentration
    Ratio
    Gas category and
    concentration in
    multi-pass cell
    CO/10–6CH4/10–2CO/10–6CH4/10–2
    119.3019.30
    254.0054.00
    3102.00102.00
    400.5000.50
    501.0401.04
    602.0202.02
    705.0205.02
    854.01.041∶127.00.52
    9102.01.041∶151.00.52
    1019.31.041∶19.60.52
    1119.30.501∶19.60.25
    1219.35.021∶19.62.51
    1319.32.021∶19.61.01
    1419.38.501∶19.64.25
    DownLoad: CSV

    表 2  SVR模型主要参数

    Table 2.  Optimal parameters of SVR model.

    CO-SVRmodelCH4-SVRmodel
    BoxConstraint(C )0.34430.0180
    KernelScale0.06170.9205
    ε0.171065.1810
    Total function evaluations1515
    Total elapsed time in seconds26.254512.5730
    DownLoad: CSV
  • [1]

    Zhang Z R, Pang T, Yang Y, Xia H, Cui X J, Sun P S, Wu B, Wang Y, Sigrist M W, Dong F Z 2016 Opt. Express 24 A943Google Scholar

    [2]

    Wang F P, Chang J, Wang Q, Wei W, Qin Z G 2017 Sens. Actuators A 259 152Google Scholar

    [3]

    Avetisov V, Bjoroey O, Wang J, Geiser P, Paulsen K G 2019 Sensors 19 5313Google Scholar

    [4]

    Nwaboh J A, Werhahn O, Ortwein P, Schiel D, Ebert V 2013 Meas. Sci. Technol. 24 015202Google Scholar

    [5]

    Vallon R, Soutade J, Verant J L, Meyers J, Paris S, Mohamed A 2010 Sensors 10 6081Google Scholar

    [6]

    夏滑, 吴边, 张志荣, 庞涛, 董凤忠, 王煜 2013 物理学报 62 214208Google Scholar

    Xia H, Wu B, Zhang Z R, Pang T, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 214208Google Scholar

    [7]

    Zhang L W, Zhang Z R, Sun P S, Pang T, Xia H, Cui X J, Guo Q, Sigrist M W, Shu C M, Shu Z F 2020 Spectrochim. Acta, Part A 239 118495Google Scholar

    [8]

    He Q X, Dang P P, Liu Z W, Zheng C T, Wang Y D 2017 Opt. Quantum Electron. 49 115Google Scholar

    [9]

    Kluczynski P, Gustafsson J, Lindberg A M, Axner O 2001 Spectrochim. Acta, Part B 56 1277Google Scholar

    [10]

    Wang F, Wu Q, Huang Q X, Zhang H D, Yan J H, Cen K F 2015 Opt. Commun. 346 53Google Scholar

    [11]

    Lin X, Yu X L, Li F, Zhang S H, Xin J G, Chang X Y 2013 Appl. Phys. B: Lasers Opt. 110 401Google Scholar

    [12]

    Köhring M, Huang S, Jahjah M, Jiang W, Ren W, Willer U, Caneba C, Yang L, Nagrath D, Schade W, Tittel F K 2014 Appl. Phys. B 117 445Google Scholar

    [13]

    Zhang T, Kang J, Meng D, Wang H, Mu Z, Zhou M, Zhang X, Chen C 2018 Sensors 18 4295Google Scholar

    [14]

    张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜 2013 物理学报 62 234204Google Scholar

    Zhang Z R, Wu B, Xia H, Pang T, Wang G X, Sun P S, Dong F Z, Wang Y 2013 Acta Phys. Sin. 62 234204Google Scholar

    [15]

    Gabrysch M, Corsi C, Pavone F S, Inguscio M 1997 Appl. Phys. B 65 75Google Scholar

    [16]

    Cai T D, Gao G Z, Wang M R 2016 Opt. Express 24 859Google Scholar

    [17]

    Malegori C, Marques E J N, Freitas S T d, Pimentel M F, Pasquini C, Casiraghi E 2017 Talanta 165 112Google Scholar

    [18]

    张志荣, 夏滑, 董凤忠, 庞涛, 吴边 2013 光学精密工程 21 2771Google Scholar

    Zhang Z R, Xia H, Dong F Z, Pang T, Wu B 2013 Opt. Precis. Eng. 21 2771Google Scholar

    [19]

    Shao L G, Fang B, Zheng F, Qiu X B, He Q S, Wei J L, Li C L, Zhao W X 2019 Spectrochim. Acta, Part A 222 117118Google Scholar

    [20]

    Qu J, Chen H Y, Liu W Z, Zhang B, Li Z B 2015 Proceedings of the 2015 International Conference on Intelligent Systems Research and Mechatronics Engineering Zhengzhou, PRC, April 11−13, 2015 p2111

    [21]

    Laref R, Losson E, Sava A, Adjallah K, Siadat M 2018 2018 Ieee International Conference on Industrial Technology (Icit) Lyon, France, February 19−22, 2018 p1335

    [22]

    Reid J, Labrie D 1981 Appl. Phys. B 26 203

    [23]

    Smola A J, Scholkopf B 2004 Stat. Comput. 14 199Google Scholar

    [24]

    Gordon I E, Rothman L S, Hill C, et al. 2017 J. Quant. Spectrosc. Radiat. Transfer 203 3Google Scholar

Metrics
  • Abstract views:  4291
  • PDF Downloads:  124
  • Cited By: 0
Publishing process
  • Received Date:  07 February 2021
  • Accepted Date:  11 March 2021
  • Available Online:  16 July 2021
  • Published Online:  20 July 2021

/

返回文章
返回