Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Electrical conductivity of germanium selenide nanosheets in oxygen and butane

Dai Fang-Bo Yuan Jian-Mei Xu Kai-Yan Guo Zheng Zhao Hong-Quan Mao Yu-Liang

Citation:

Electrical conductivity of germanium selenide nanosheets in oxygen and butane

Dai Fang-Bo, Yuan Jian-Mei, Xu Kai-Yan, Guo Zheng, Zhao Hong-Quan, Mao Yu-Liang
PDF
HTML
Get Citation
  • As a type of two-dimensional (2D) semiconductor material, 2D germanium selenide (GeSe) exhibits excellent optoelectronic properties, and has potential applications in optoelectronic devices. The GeSe is a layered material with weak van der Waals interaction. Because of the high brittleness of GeSe, it is not easy to obtain 2D GeSe samples only by mechanical peeling technique. In order to obtain a thinner GeSe sheet, we use heat treatment to thin the bulk GeSe at a high temperature in vacuum. The GeSe samples obtained by mechanical peeling are placed in a tubular furnace with a pressure of 5 × 10-4 Pa for high temperature heating and thinning. In order to explore the better thinning effect, we set four temperatures to be at 320, 330, 340 and 350 ℃, respectively. After high temperature thinning, the samples are characterized and observed by atomic force microscope (AFM), scanning electron microscope (SEM), Raman spectrometer and photoluminescence (PL) spectrometer. From the above experiments, the GeSe nanosheet with a thickness of about 5 nm is prepared by mechanical peeling and high temperature thinning technology. Then, the electrical conductivities of GeSe nanosheets in oxygen (O2) and butane (C4H10) with different concentrations are evaluated by our designed experimental device. The results show that with the increase of oxygen concentration, the electrical conductivity of GeSe nanosheets increases. When the GeSe nanosheet is in butane gas, its conductivity under the same voltage decreases with the increase of the concentration of butane gas. In order to further analyze the mechanism of gas adsorption on GeSe nanosheets, we carry out the first-principles calculations. Our calculation results show that the adsorption energy of GeSe nanosheets for oxygen and butane is –4.555 eV and –4.865 eV, respectively. It is shown that both adsorption systems have a certain stability. The adsorption energy of C4H10 is smaller than that of O2, which corresponds to the smaller layer spacing of C4H10 than that of O2 on GeSe surface. From Bader analysis, it is shown that 0.262e is transferred from the surface of GeSe nanosheet to O2 molecule, which is much larger than 0.022e transferred from GeSe to C4H10 molecule. It can be inferred that the bond formed between GeSe and O2 molecule is covalent bond, while GeSe adsorption C4H10 is very fragile hydrogen bond adsorption. In an ideal condition (single atomic GeSe layer, no Se vacancy, and the device preparation process is vacuum), our calculation results show that C4H10 still has a weak ability to obtain electrons from the GeSe nanosheet. However, the complex conditions such as the actual layer thickness, the appearance of Se vacancy and the adsorption of O2 molecules on the surface leads to the difference between the experimental results and the theoretical calculations, which can be attributed to the adsorption of O2 molecules on the GeSe surface from the air during the processing of GeSe thinning and device fabrication. Owing to the high density of Se vacancies in the thin film, the high density of O2 adsorption is caused. Thus, butane gas is easy to lose electrons on the GeSe surface due to the O2 adsorption. In other words, electrons are transferred from butane gas molecules to the surface of GeSe film and neutralized with holes, which reduces the concentration of carriers and the concentration of holes in GeSe film, thus reducing the conductivity. Our research will contribute to the application of GeSe nanosheets in optoelectronic devices at the atmosphere of oxygen and butane.
      Corresponding author: Zhao Hong-Quan, hqzhao@cigit.ac.cn ; Mao Yu-Liang, ylmao@xtu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40280), the Research and Development Project of Key Field of Hunan Province, China (Grant No. 2019GK2101), the Innovation Project of Degree and Postgraduate of Hunan Province, China (Grant Nos. 2020JGYB097, 2020JGYB098), and the Innovative Research Program for College Students of Hunan Province, China (Grant No. S201910530020).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [4]

    Jing Y, Zhang X, Zhou Z 2016 Wiley Interdiscip. Rev. Comput. Mol. Sci. 6 5Google Scholar

    [5]

    Mao Y L, Stocks G M, Zhong J X 2010 New J. Phys. 12 033046Google Scholar

    [6]

    Xu C S, Yuan J M, Wang D D, Mao Y L 2018 Mater. Res. Express 6 036305Google Scholar

    [7]

    Mao Y L, Zhong J X 2008 Nanotechnology 19 205708Google Scholar

    [8]

    Salvo P, Melai B, Calisi N, Paoletti C, Bellagambi F G, Kirchhain A, Trivella M G, Fuoco R, Francesco F D 2017 Sens. Actuators, B 256 976

    [9]

    Chu K, Wang X H, Li Y B, Huang D J, Geng Z R, Zhao X L, Liu H, Zhuang H 2018 Mater. Des. 140 85Google Scholar

    [10]

    Prashantha K, Roger F 2017 J. Macromol. Sci. Part A Pure Appl. Chem. 54 24Google Scholar

    [11]

    Zhang C, Man B Y, Yang C, Jiang S Z, Liu M H, Chen C S, Xu S C, Sun Z C, Gao X G, Chen X F 2013 Nanotechnology 24 395603Google Scholar

    [12]

    Sun Z C, Yang C, Liu M, Chen C S, Xu S C, Zhang C, Man B Y 2014 Appl. Surf. Sci. 315 368Google Scholar

    [13]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia YY, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [14]

    Foo M E, Gopinath S C B 2017 Biomed. Pharmacother. 94 354Google Scholar

    [15]

    Mao Y L, Mao X, Zhao H Q, Zhang N D, Shi X, Yuan J M 2018 Sci. Rep. 8 17671Google Scholar

    [16]

    Hu Y W, Long L B, Mao Y L, Zhong J X 2018 Appl. Surf. Sci. 442 390Google Scholar

    [17]

    Zhang S L, Xie M Q, Li F Y, Yan Z, Li Y F, Kan E, Liu W, Chen Z F, Zeng H B 2016 Angew. Chem. 55 1666Google Scholar

    [18]

    Dutta S N, Jeffrey G A 1965 Inorg. Chem. 4 1363Google Scholar

    [19]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2018 Phys. Chem. Chem. Phys. 20 6929Google Scholar

    [20]

    Vaughn I D D, Patel R J, Hickner M A, Schaak R E 2010 J. Am. Chem. Soc. 132 15170Google Scholar

    [21]

    Mao Y L, Guo G, Yuan J M, Zhong J X 2019 Appl. Surf. Sci. 464 236Google Scholar

    [22]

    Zhao H Q, Mao Y L, Mao X, Shi X, X C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [23]

    Shi G S, Kioupakis E 2015 Nano Lett. 15 6926Google Scholar

    [24]

    Xue D J, Tan J H, Hu J S, Hu W P, Guo Y G, Wan L J 2012 Adv. Mater. 24 4528Google Scholar

    [25]

    Zhang S L, Liu S G, Huang S P, Cai B, Xie M Q, Qu L H, Zou Y S, Hu Z Y, Yu X C, Zeng H B 2015 Sci. China Mater. 58 929

    [26]

    Liu L, Yang Q, Ye H Y, Chen X P, Zhang G Q 2017 International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems Dresden, Germany, May 2–5, 2017 p1

    [27]

    Mao Y L, Long L B, Yuan J M, Zhong J X, Zhao H Q 2018 Chem. Phys. Lett. 706 501Google Scholar

    [28]

    Kresse G, Joubert D P 1999 Phys. Rev. B 59 1758

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [30]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [31]

    Matthias E, Gustavo E S 1999 J. Chem. Phys. 110 5029Google Scholar

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [33]

    Fei R X, Li W B, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104Google Scholar

    [34]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [35]

    Savin A, Nesper R, Wengert S, Fassler T F 1997 Angew. Chem. Int. Ed. 36 1808Google Scholar

  • 图 1  (a)原子力显微镜表征图 (在图像中插入的绿线显示了减薄后GeSe的厚度); (b)光致发光光谱图

    Figure 1.  (a) Atomic force microscope characterization (the green line inserted in the image shows the thickness of germanium selenide after thinning); (b) photoluminescence spectrum.

    图 2  自制实验气体腔 (a)原理图; (b)实物图

    Figure 2.  Self-made experimental gas chamber: (a) Schematic diagram; (b) physical diagram.

    图 3  (a) GeSe单胞的结构; (b) GeSe单层的能带结构; (c) GeSe上吸附位点G点, S点, C点和B点的示意图; (d) GeSe吸附氧气最稳定的吸附结构示意图(侧视图与俯视图); (e) GeSe吸附丁烷最稳定的吸附结构示意图(侧视图与俯视图). 黄色, 绿色, 红色, 黑色和白色的球分别代表着Se, Ge, O, C和H原子

    Figure 3.  (a) Optimized structure of GeSe monolayer; (b) band structures of GeSe monolayer; (c) considered positions for gas molecules adsorption: G site, S site, C site and B site on GeSe monolayer, respectively; (d) obtained stable adsorption configuration (side and top view) for O2 on GeSe monolayer; (e) obtained stable adsorption configuration (side and top view) for C4H10 on GeSe monolayer. The yellow, green, red, black and white balls denote Se, Ge, O, C and H atoms, respectively.

    图 4  (a) GeSe纳米片吸附不同浓度的氧气时电压-电流特性曲线; (b) GeSe纳米片吸附不同浓度的丁烷气时电压-电流特性曲线

    Figure 4.  (a) Voltage-current characteristic curve when germanium selenide device adsorbs different concentrations of oxygen; (b) voltage-current characteristic curve when germanium selenide device adsorbs different concentrations of butane gas.

    图 5  GeSe吸附(a)氧气和(b)丁烷的差分电荷密度图, 等值面分别取0.01和0.0009e/A3. 其中蓝色原子为硒原子, 棕色原子为锗原子, 红色为氧原子, 黑色为碳原子, 粉色为氢原子; 黄色部分表示得到电子, 绿色部分表示失去电子. GeSe吸附(c)氧气和(d)丁烷的电子局域图, 左边是ELF (e/A3) 的参考值

    Figure 5.  Charge density difference for the configurations of (a) O2 and (b) C4H10 on GeSe monolayer. The plotted isosurface is 0.01e/A3 and 0.0009e/A3, respectively. Blue atoms are selenium atoms, brown atoms are germanium atoms, red are oxygen atoms, black are carbon atoms, and pink are hydrogen atoms. In the differential charge density graph, the yellow part indicates the gain of electrons, and the green part indicates the loss of electrons. Electron localization function (ELF) for configurations of (c) O2 and (d) C4H10 adsorbed on GeSe monolayer, respectively. The ELF value is listed at the left side with a unit of e/A3.

    表 1  吸附能(Ea), GeSe与气体分子之间的电荷转移量(ρ)以及它们之间的最近距离(d )

    Table 1.  Calculated adsorption energy (Ea), the charge transfer (ρ) between gas molecules and monolayer GeSe, and the nearest distance (d ) between them.

    Gas moleculeEa/eVdρ/estyle
    O2–4.5552.6870.262acceptor
    C4H10–4.8652.4040.022acceptor
    DownLoad: CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [3]

    Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A 2014 Nat. Photonics 8 899Google Scholar

    [4]

    Jing Y, Zhang X, Zhou Z 2016 Wiley Interdiscip. Rev. Comput. Mol. Sci. 6 5Google Scholar

    [5]

    Mao Y L, Stocks G M, Zhong J X 2010 New J. Phys. 12 033046Google Scholar

    [6]

    Xu C S, Yuan J M, Wang D D, Mao Y L 2018 Mater. Res. Express 6 036305Google Scholar

    [7]

    Mao Y L, Zhong J X 2008 Nanotechnology 19 205708Google Scholar

    [8]

    Salvo P, Melai B, Calisi N, Paoletti C, Bellagambi F G, Kirchhain A, Trivella M G, Fuoco R, Francesco F D 2017 Sens. Actuators, B 256 976

    [9]

    Chu K, Wang X H, Li Y B, Huang D J, Geng Z R, Zhao X L, Liu H, Zhuang H 2018 Mater. Des. 140 85Google Scholar

    [10]

    Prashantha K, Roger F 2017 J. Macromol. Sci. Part A Pure Appl. Chem. 54 24Google Scholar

    [11]

    Zhang C, Man B Y, Yang C, Jiang S Z, Liu M H, Chen C S, Xu S C, Sun Z C, Gao X G, Chen X F 2013 Nanotechnology 24 395603Google Scholar

    [12]

    Sun Z C, Yang C, Liu M, Chen C S, Xu S C, Zhang C, Man B Y 2014 Appl. Surf. Sci. 315 368Google Scholar

    [13]

    Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia YY, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558Google Scholar

    [14]

    Foo M E, Gopinath S C B 2017 Biomed. Pharmacother. 94 354Google Scholar

    [15]

    Mao Y L, Mao X, Zhao H Q, Zhang N D, Shi X, Yuan J M 2018 Sci. Rep. 8 17671Google Scholar

    [16]

    Hu Y W, Long L B, Mao Y L, Zhong J X 2018 Appl. Surf. Sci. 442 390Google Scholar

    [17]

    Zhang S L, Xie M Q, Li F Y, Yan Z, Li Y F, Kan E, Liu W, Chen Z F, Zeng H B 2016 Angew. Chem. 55 1666Google Scholar

    [18]

    Dutta S N, Jeffrey G A 1965 Inorg. Chem. 4 1363Google Scholar

    [19]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2018 Phys. Chem. Chem. Phys. 20 6929Google Scholar

    [20]

    Vaughn I D D, Patel R J, Hickner M A, Schaak R E 2010 J. Am. Chem. Soc. 132 15170Google Scholar

    [21]

    Mao Y L, Guo G, Yuan J M, Zhong J X 2019 Appl. Surf. Sci. 464 236Google Scholar

    [22]

    Zhao H Q, Mao Y L, Mao X, Shi X, X C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 28 1704855Google Scholar

    [23]

    Shi G S, Kioupakis E 2015 Nano Lett. 15 6926Google Scholar

    [24]

    Xue D J, Tan J H, Hu J S, Hu W P, Guo Y G, Wan L J 2012 Adv. Mater. 24 4528Google Scholar

    [25]

    Zhang S L, Liu S G, Huang S P, Cai B, Xie M Q, Qu L H, Zou Y S, Hu Z Y, Yu X C, Zeng H B 2015 Sci. China Mater. 58 929

    [26]

    Liu L, Yang Q, Ye H Y, Chen X P, Zhang G Q 2017 International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems Dresden, Germany, May 2–5, 2017 p1

    [27]

    Mao Y L, Long L B, Yuan J M, Zhong J X, Zhao H Q 2018 Chem. Phys. Lett. 706 501Google Scholar

    [28]

    Kresse G, Joubert D P 1999 Phys. Rev. B 59 1758

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [30]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566Google Scholar

    [31]

    Matthias E, Gustavo E S 1999 J. Chem. Phys. 110 5029Google Scholar

    [32]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [33]

    Fei R X, Li W B, Li J, Yang L 2015 Appl. Phys. Lett. 107 173104Google Scholar

    [34]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [35]

    Savin A, Nesper R, Wengert S, Fassler T F 1997 Angew. Chem. Int. Ed. 36 1808Google Scholar

  • [1] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [2] Zhang Jiang-Lin, Wang Zhong-Min, Wang Dian-Hui, Hu Chao-Hao, Wang Feng, Gan Wei-Jiang, Lin Zhen-Kun. First principles study of V/Pd interface interactions and their hydrogen absorption properties. Acta Physica Sinica, 2023, 72(16): 168801. doi: 10.7498/aps.72.20230132
    [3] Li Jun-Wei, Jia Wei-Min, Lü Sha-Sha, Wei Ya-Xuan, Li Zheng-Cao, Wang Jin-Tao. First principles study of hydrogen adsorption and dissociation behavior on γ-U (100)/Mo surface. Acta Physica Sinica, 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [4] Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue. First-principles study of hydrogen storage properties of silicene under different Li adsorption components. Acta Physica Sinica, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [5] Liu Kun, Wang Fu-He, Shang Jia-Xiang. First-principles study on the adsorption of oxygen at NiTi (110) surface. Acta Physica Sinica, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [6] Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo. First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface. Acta Physica Sinica, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [7] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [8] Liu Feng-Bin, Chen Wen-Bin, Cui Yan, Qu Min, Cao Lei-Gang, Yang Yue. A first principles study on the active adsorbates on the hydrogenated diamond surface. Acta Physica Sinica, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [10] Zhang Yang, Huang Yan, Chen Xiao-Shuang, Lu Wei. The study of oxygen and sulfur adsorption on the InSb (110) surface, using first-principle energy calculations. Acta Physica Sinica, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [11] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [12] Fang Cai-Hong, Shang Jia-Xiang, Liu Zeng-Hui. Oxygen adsorption on Nb(110) surface by first-principles calculation. Acta Physica Sinica, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [13] Liu Jian-Jun. First-principles calculation of electronic structure of (Zn,Al)O and analysis of its conductivity. Acta Physica Sinica, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [14] Li Qi, Fan Guang-Han, Xiong Wei-Ping, Zhang Yong. First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [15] Song Jiu-Xu, Yang Yin-Tang, Liu Hong-Xia, Zhang Zhi-Yong. First-principles study of the electonic structure of nitrogen-doped silicon carbide nanotubes. Acta Physica Sinica, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [16] Yang Min, Wang Liu-Ding, Chen Guo-Dong, An Bo, Wang Yi-Jun, Liu Guang-Qing. First-principles study on field emission of C-doped capped single-walled BNNT. Acta Physica Sinica, 2009, 58(10): 7151-7155. doi: 10.7498/aps.58.7151
    [17] Xu Xiao-Guang, Wang Chun-Zhong, Liu Wei, Meng Xing, Sun Yuan, Chen Gang. Ab initio study of the effects of Mg doping on electronic structure of Li(Co , Al)O2. Acta Physica Sinica, 2005, 54(1): 313-316. doi: 10.7498/aps.54.313
    [18] Sheng Yong-Gang, Xu Yao, Li Zhi-Hong, Wu Dong, Sun Yu-Han, Wu Zhong-Hua. Determination of fractal dimensions of silicon dioxide xerogel by means of gas-adsorption. Acta Physica Sinica, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [19] Tang Na-Si, Yan Xiao-Hong, Ding Jian-Wen. The effects of both length and tube-diameter on the conductance of single-walled carbon nanotubes. Acta Physica Sinica, 2005, 54(1): 333-337. doi: 10.7498/aps.54.333
    [20] Xu Xiao-Guang, Wei Ying-Jin, Meng Xing, Wang Chun-Zhong, Huang Zu-Fei, Chen Gang. Ab initio study of the effects of Mg, Al dopingon the electronic structure of LiCoO2. Acta Physica Sinica, 2004, 53(1): 210-213. doi: 10.7498/aps.53.210
Metrics
  • Abstract views:  3192
  • PDF Downloads:  62
  • Cited By: 0
Publishing process
  • Received Date:  16 February 2021
  • Accepted Date:  30 March 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回