Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Independent dual-beam control based on programmable coding metasurface

Zhang Na Zhao Jian-Min Chen Ke Zhao Jun-Ming Jiang Tian Feng Yi-Jun

Citation:

Independent dual-beam control based on programmable coding metasurface

Zhang Na, Zhao Jian-Min, Chen Ke, Zhao Jun-Ming, Jiang Tian, Feng Yi-Jun
PDF
HTML
Get Citation
  • Programmable metasurfaces incorporating with tunable materials or components are emerging as an attractive option to realize reconfigurable manipulations of electromagnetic (EM) behaviors in real-time. Many efforts have been devoted to the realization of active EM manipulations of the metasurface and significant progress has been achieved, showing their unprecedented ability to arbitrarily manipulate wavefronts in dynamic functions. However, most of the existing multi-beam metasurfaces are based on passive building blocks, only possessing one or a few functions, which cannot provide tunable and independent multi-beam control, thus limiting their further uses in wireless communications. Hence, a 1-bit coding metasurface with high-efficiency, programmable, and independent multi-beam control is proposed in this paper, providing dynamic EM responses with real-time reconfigurability, and controlled by external digital circuits through direct current (DC) bias networks. Specifically, the meta-atom loaded with PIN diodes is employed to achieve independently tunable phase characteristics, thus complex EM functions can be manipulated by redistributing the spatial phases of the metasurface. Symmetric/asymmetric independent dual- and multi-beam manipulations are analyzed theoretically and simulated by EM software. Then as an experimental verification, a metasurface consisting of 14 × 14 meta-atoms is fabricated and tested in a standard microwave anechoic chamber, and the measured results accord well with the simulations. The proposed metasurface has promising ability to generate the arbitrary and independent multi-beams, which may largely enhance the information capacity of the metasurfaces, offering untapped potentials in wireless communication systems.
      Corresponding author: Chen Ke, ke.chen@nju.edu.cn ; Feng Yi-Jun, yjfeng@nju.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0700201), the National Natural Science Foundation of China (Grant Nos. 61801207, 91963128, 61731010), the Fundamental Research Funds for the Central Universities, China, and the Jiangsu Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves, China.
    [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Ding G W, Chen K, Luo X Y, Zhao J M, Jiang T, Feng Y J 2019 Phys. Rev. Appl. 11 044043Google Scholar

    [3]

    Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [4]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light: Sci. Appl. 5 e16076Google Scholar

    [5]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Tsai D P, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Opt. Mater. 6 1800728Google Scholar

    [6]

    Chen K, Cui L, Feng Y, Zhao J, Jiang T, Zhu B 2017 Opt. Express 25 5571Google Scholar

    [7]

    Chen K, Feng Y, Yang Z, Cui L, Zhao J, Zhu B, Jiang T 2016 Sci. Rep. 6 35968Google Scholar

    [8]

    Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [9]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225Google Scholar

    [10]

    Yang H H, Yang F, Cao X Y, Xu S H, Gao J, Chen X B, Li T 2017 IEEE Trans. Antennas Propag. 65 6Google Scholar

    [11]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y, Feng Y J 2021 IEEE Trans. Antennas Propag. 69 6Google Scholar

    [12]

    Luo X 2019 Adv. Mater. 31 e1804680Google Scholar

    [13]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 6 1800415Google Scholar

    [14]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G-Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [15]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218Google Scholar

    [16]

    Della Giovampaola C, Engheta N 2014 Nat. Mater. 13 1115Google Scholar

    [17]

    Kim M, Jeong J, Poon J K S, Eleftheriades G V 2016 J. Opt. Soc. Am. B: Opt. Phys. 33 980Google Scholar

    [18]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [19]

    Cui T J, Liu S, Li L L 2016 Light Sci. Appl. 5 e16172Google Scholar

    [20]

    Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L 2020 Adv. Opt. Mater. 8 1901548Google Scholar

    [21]

    Luo Z, Chen M Z, Wang Z X, Zhou L, Li Y B, Cheng Q, Ma H F, Cui T J 2019 Adv. Funct. Mater. 29 1906635Google Scholar

    [22]

    Bai X, Kong F, Sun Y, Wang G, Qian J, Li X, Cao A, He C, Liang X, Jin R, Zhu W 2020 Adv. Opt. Mater. 8 2000570Google Scholar

    [23]

    Li H, Ma C, Ye D, Sun Y, Zhu W, Li C, Ran L 2018 IEEE Trans. Antennas Propag. 66 4Google Scholar

    [24]

    Nayeri P, Yang F, Z. Elsherbeni A 2012 IEEE Trans. Antennas Propag. 60 2Google Scholar

    [25]

    Martinez-de-Rioja E, A. Encinar J, Florencio R, Tienda C 2019 IEEE Trans. Antennas Propag. 67 1Google Scholar

    [26]

    Chou H T, Lertwiriyaprapa T, Akkaraekthalin P, Torrungrueng D 2020 IEEE Trans. Antennas Propag. 68 6Google Scholar

    [27]

    Somolinos A, Florencio R, González I, A. Encinar J, Cátedra F 2019 IEEE Trans. Antennas Propag. 67 6Google Scholar

    [28]

    Ding G, Chen K, Qian G, Zhao J, Jiang T, Feng Y, Wang Z 2020 Adv. Opt. Mater. 8 2000342Google Scholar

  • 图 1  (a) 超构表面单元结构示意图; (b)单元顶层金属结构示意图; (c)单元中间层金属结构示意图; (d)单元底层金属结构示意图; (e) 单元结构反射相位曲线; (f) 单元结构反射幅度曲线

    Figure 1.  (a) Schematic of the coding metasurface elements; (b) schematic of the top-layer of metal structure; (c) schematic of the middle-layer of metal structure; (d) schematic of the bottom-layer of metal structure; (e) reflection phases of the elements; (f) reflection amplitudes of the elements.

    图 2  (a) 超构表面波束调控示意图; (b) 双波束(30º, 0º)和(20º, 180º)离散相位分布图; (c) 双波束(30º, 0º)和(20º, 180º)u-v平面归一化远场方向图($ u=\mathrm{sin}\theta \mathrm{cos}\phi , v=\mathrm{sin}\theta \mathrm{sin}\phi $)

    Figure 2.  (a) Schematic of the metasurface for three-dimension beam-control; (b) the calculated discretized phase distributions for the radiation directions of (30º, 0º) and (20º, 180º); (c) the calculated normalized radiation patterns in uv-plane ($ u=\mathrm{sin}\theta \mathrm{cos}\phi $, $ v=\mathrm{sin}\theta \mathrm{sin}\phi $).

    图 3  (a) 超构表面在xoz-平面实现对称双波束扫描功能示意图; (b) 超构表面在yoz-平面实现对称双波束扫描功能示意图; (c) 超构表面在xoz-平面上的远场仿真结果; (d) 超构表面在yoz-平面上的远场仿真结果

    Figure 3.  (a) Schematic of the symmetric-beam scanning of the metasurface in xoz-plane; (b) schematic of the symmetric-beam scanning of the metasurface in yoz-plane; (c) the simulated radiation patterns of the metasurface in xoz-plane; (d) the simulated radiation patterns of the metasurface in yoz-plane.

    图 4  超构表面非对称波束设计的远场仿真结果图. 波束辐射方向 (θ, φ)依次为 (a) (20º, 0º), (20º, 90º); (b) (19º, 180º), (30º, 270º); (c) (30º, 0º), (20º, 180º); (d) (0º, 0º), (11º, 0º); (e) (19º, 180º), (9º, 180º), (11º, 0º); (f) (28º, 180º), (5º, 0º), (32º, 0º)

    Figure 4.  The simulated three-dimension radiation patterns of asymmetric-beam control of the metasurface. The radiation angles (θ, φ) are: (a) (20º, 0º), (20º, 90º); (b) (19º, 180º), (30º, 270º); (c) (30º, 0º), (20º, 180º); (d) (0º, 0º), (10º, 0º); (e) (19º, 180º), (9º, 180º), (11º, 0º); (f) (28º, 180º), (5º, 0º), (32º, 0º), respectively.

    图 5  (a) 超构表面样品图; (b)−(i) 超构表面独立波束设计远场测试结果图. 超构表面实现对称双波束扫描功能的测试结果图, 分别在 (b) xoz-平面与(c) yoz-平面; 超构表面非对称独立波束设计的测试结果图, 波束辐射方向 (θ, φ)依次为 (d) (20º, 0º), (20º, 90º); (e) (19º, 180º), (30º, 270º); (f) (30º, 0º), (20º, 180º); (g) (0º, 0º), (11º, 0º); (h) (19º, 180º), (9º, 180º), (11º, 0º); (i) (28º, 180º), (5º, 0º), (32º, 0º)

    Figure 5.  (a) Photograph of the fabricated metasurface; (b)−(i) the measurement results of the metasurface. measurement results of symmetric-beam scanning in (b) xoz-plane and (c) yoz-plane; measurement results of asymmetric-beam control of the metasurface, and the radiation angles (θ, φ) are (d) (20º, 0º), (20º, 90º); (e) (19º, 180º), (30º, 270º); (f) (30º, 0º), (20º, 180º); (g) (0º, 0º), (11º, 0º); (h) (19º, 180º), (9º, 180º), (11º, 0º); (i) (28º, 180º), (5º, 0º), (32º, 0º), respectively.

  • [1]

    Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [2]

    Ding G W, Chen K, Luo X Y, Zhao J M, Jiang T, Feng Y J 2019 Phys. Rev. Appl. 11 044043Google Scholar

    [3]

    Sun S, Yang K Y, Wang C M, Juan T K, Chen W T, Liao C Y, He Q, Xiao S, Kung W T, Guo G Y, Zhou L, Tsai D P 2012 Nano Lett. 12 6223Google Scholar

    [4]

    Liu S, Cui T J, Xu Q, Bao D, Du L, Wan X, Tang W X, Ouyang C, Zhou X Y, Yuan H, Ma H F, Jiang W X, Han J, Zhang W, Cheng Q 2016 Light: Sci. Appl. 5 e16076Google Scholar

    [5]

    Yan L, Zhu W, Karim M F, Cai H, Gu A Y, Shen Z, Chong P H J, Tsai D P, Kwong D L, Qiu C W, Liu A Q 2018 Adv. Opt. Mater. 6 1800728Google Scholar

    [6]

    Chen K, Cui L, Feng Y, Zhao J, Jiang T, Zhu B 2017 Opt. Express 25 5571Google Scholar

    [7]

    Chen K, Feng Y, Yang Z, Cui L, Zhao J, Zhu B, Jiang T 2016 Sci. Rep. 6 35968Google Scholar

    [8]

    Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alu A, Qiu C W 2017 Adv. Mater. 29 1606422Google Scholar

    [9]

    Chen W T, Yang K Y, Wang C M, Huang Y W, Sun G, Chiang I D, Liao C Y, Hsu W L, Lin H T, Sun S, Zhou L, Liu A Q, Tsai D P 2014 Nano Lett. 14 225Google Scholar

    [10]

    Yang H H, Yang F, Cao X Y, Xu S H, Gao J, Chen X B, Li T 2017 IEEE Trans. Antennas Propag. 65 6Google Scholar

    [11]

    Luo X Y, Guo W L, Chen K, Zhao J M, Jiang T, Liu Y, Feng Y J 2021 IEEE Trans. Antennas Propag. 69 6Google Scholar

    [12]

    Luo X 2019 Adv. Mater. 31 e1804680Google Scholar

    [13]

    He Q, Sun S, Xiao S, Zhou L 2018 Adv. Opt. Mater. 6 1800415Google Scholar

    [14]

    李晓楠, 周璐, 赵国忠 2019 物理学报 68 238101Google Scholar

    Li X N, Zhou L, Zhao G-Z 2019 Acta Phys. Sin. 68 238101Google Scholar

    [15]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218Google Scholar

    [16]

    Della Giovampaola C, Engheta N 2014 Nat. Mater. 13 1115Google Scholar

    [17]

    Kim M, Jeong J, Poon J K S, Eleftheriades G V 2016 J. Opt. Soc. Am. B: Opt. Phys. 33 980Google Scholar

    [18]

    张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101Google Scholar

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101Google Scholar

    [19]

    Cui T J, Liu S, Li L L 2016 Light Sci. Appl. 5 e16172Google Scholar

    [20]

    Li Y, Lin J, Guo H, Sun W, Xiao S, Zhou L 2020 Adv. Opt. Mater. 8 1901548Google Scholar

    [21]

    Luo Z, Chen M Z, Wang Z X, Zhou L, Li Y B, Cheng Q, Ma H F, Cui T J 2019 Adv. Funct. Mater. 29 1906635Google Scholar

    [22]

    Bai X, Kong F, Sun Y, Wang G, Qian J, Li X, Cao A, He C, Liang X, Jin R, Zhu W 2020 Adv. Opt. Mater. 8 2000570Google Scholar

    [23]

    Li H, Ma C, Ye D, Sun Y, Zhu W, Li C, Ran L 2018 IEEE Trans. Antennas Propag. 66 4Google Scholar

    [24]

    Nayeri P, Yang F, Z. Elsherbeni A 2012 IEEE Trans. Antennas Propag. 60 2Google Scholar

    [25]

    Martinez-de-Rioja E, A. Encinar J, Florencio R, Tienda C 2019 IEEE Trans. Antennas Propag. 67 1Google Scholar

    [26]

    Chou H T, Lertwiriyaprapa T, Akkaraekthalin P, Torrungrueng D 2020 IEEE Trans. Antennas Propag. 68 6Google Scholar

    [27]

    Somolinos A, Florencio R, González I, A. Encinar J, Cátedra F 2019 IEEE Trans. Antennas Propag. 67 6Google Scholar

    [28]

    Ding G, Chen K, Qian G, Zhao J, Jiang T, Feng Y, Wang Z 2020 Adv. Opt. Mater. 8 2000342Google Scholar

  • [1] Huang Ruo-Tong, Li Jiu-Sheng. Terahertz multibeam modulation reflection-coded metasurface. Acta Physica Sinica, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] Huang Shuai, Wu Tian-Hao, Guan Chun-Sheng, Ding Xu-Min, Wu Yu-Ming, Wu Qun, Tang Xiao-Bin. Cavity-excited Huygens’ metasurface for wavefront manipulation. Acta Physica Sinica, 2022, 71(22): 224101. doi: 10.7498/aps.71.20221284
    [3] Li Shun, Li Zheng-Jun, Qu Tan, Li Hai-Ying, Wu Zhen-Sen. Propagation of double zero-order Bessel beam and its scattering properties to uniaxial anisotropic spheres. Acta Physica Sinica, 2022, 71(18): 180301. doi: 10.7498/aps.71.20220491
    [4] Li Guo-Qiang, Shi Hong-Yu, Liu Kang, Li Bo-Lin, Yi Jian-Jia, Zhang An-Xue, Xu Zhuo. Multi-beam multi-mode vortex beams generation based on metasurface in terahertz band. Acta Physica Sinica, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [5] Wu Feng, Guo Zhi-Wei, Wu Jia-Ju, Jiang Hai-Tao, Du Gui-Qiang. Band gap engineering and applications in compound periodic structure containing hyperbolic metamaterials. Acta Physica Sinica, 2020, 69(15): 154205. doi: 10.7498/aps.69.20200084
    [6] Song Zhong-Chang, Zhang Yu, Wei Chong, Yang Wu-Yi, Xu Xiao-Hui. Biosonar emission characteristics and beam control of odontocetes. Acta Physica Sinica, 2020, 69(15): 154301. doi: 10.7498/aps.69.20200406
    [7] Lü Yan-Min, Min Fu-Hong. Dynamic analysis of symmetric behavior in flux-controlled memristor circuit based on field programmable gate array. Acta Physica Sinica, 2019, 68(13): 130502. doi: 10.7498/aps.68.20190453
    [8] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [9] Han Xiu-Feng, Wan Cai-Hua. Recent progress of nonvolatile, multifunctional and programmable spin logic. Acta Physica Sinica, 2018, 67(12): 127201. doi: 10.7498/aps.67.20180906
    [10] Li Xiao-Bing, Lu Wei-Bing, Liu Zhen-Guo, Chen Hao. Dynamic beam-steering in wide angle range based on tunable graphene metasurface. Acta Physica Sinica, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [11] Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Physica Sinica, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [12] Yang Ju-Tao, Li Qing-Liang, Wang Jian-Guo, Hao Shu-Ji, Pan Wei-Yan. Theory of very low frequency/extra low frequency radiation by dual-beam beat wave heating ionosphere. Acta Physica Sinica, 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [13] Han Ya-Juan, Zhang Jie-Qiu, Li Yong-Feng, Wang Jia-Fu, Qu Shao-Bo, Zhang An-Xue. 360 scanning multi-beam antenna based on spoof surface plasmon polaritons. Acta Physica Sinica, 2016, 65(14): 147301. doi: 10.7498/aps.65.147301
    [14] Xu Ya-Ming, Wang Li-Dan, Duan Shu-Kai. A memristor-based chaotic system and its field programmable gate array implementation. Acta Physica Sinica, 2016, 65(12): 120503. doi: 10.7498/aps.65.120503
    [15] Shao Shu-Yi, Min Fu-Hong, Wu Xue-Hong, Zhang Xin-Guo. Implementation of a new chaotic system based on field programmable gate array. Acta Physica Sinica, 2014, 63(6): 060501. doi: 10.7498/aps.63.060501
    [16] Pan Jing, Qi Na, Xue Bing-Bing, Ding Qun. Field programmable gate array-based chaotic encryption system design and hardware realization of cell phone short message. Acta Physica Sinica, 2012, 61(18): 180504. doi: 10.7498/aps.61.180504
    [17] Gao Bo, Yu Xue-Feng, Ren Di-Yuan, Li Yu-Dong, Cui Jiang-Wei, Li Mao-Shun, Li Ming, Wang Yi-Yuan. Research on the total-dose irradiation damage effect for static random access memory-based field programmable gate array. Acta Physica Sinica, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
    [18] Han Guo-Xia, Han Yi-Ping. Scattering of bi-sphere arbitrarily illuminated by a single beam and a dual beam. Acta Physica Sinica, 2010, 59(4): 2434-2442. doi: 10.7498/aps.59.2434
    [19] Zhou Wu-Jie, Yu Si-Min. Chaotic digital communication system based on field programmable gate array technology—Design and implementation. Acta Physica Sinica, 2009, 58(1): 113-119. doi: 10.7498/aps.58.113
    [20] Zhou Wu-Jie, Yu Si-Min. Design and implementation of chaotic generators based on IEEE-754 standard and field programmable gate array technology. Acta Physica Sinica, 2008, 57(8): 4738-4747. doi: 10.7498/aps.57.4738
Metrics
  • Abstract views:  5539
  • PDF Downloads:  339
  • Cited By: 0
Publishing process
  • Received Date:  23 February 2021
  • Accepted Date:  12 April 2021
  • Available Online:  07 June 2021
  • Published Online:  05 September 2021

/

返回文章
返回