Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hypervelocity impact on volt-ampere characteristic of solar arrays by using two-stage light gas gun

Zheng Jian-Dong Zhou Jiang Pi Xiao-Li Zou Chen Li Yi-Fan Xu Kun-Bo Gong Zi-Zheng Hu Guo-Jie

Citation:

Hypervelocity impact on volt-ampere characteristic of solar arrays by using two-stage light gas gun

Zheng Jian-Dong, Zhou Jiang, Pi Xiao-Li, Zou Chen, Li Yi-Fan, Xu Kun-Bo, Gong Zi-Zheng, Hu Guo-Jie
PDF
HTML
Get Citation
  • Solar array is a power source of spacecraft, which is often damaged by the impact of micrometeoroids and space debris, resulting in the decrease of output power of solar array. The degradation law of volt-ampere characteristic for spacecraft solar arrays under orbital debris hypervelocity impact is investigated by using a two-stage light gas gun. The volt-ampere characteristics of the solar arrays under different impact velocities, projectile diameters and impact positions are studied. A total of 12 shots are carried out, of which 5 shots are invalid due to the impact of the projectile carrier on the specimen, and 7 shots are valid. The experimental results show that the diameter, impact velocity, and impact position of the projectile all have a great influence on the volt-ampere characteristics, and the damage morphology generated by the ground simulation test is in line with the in-orbit flight test results. The relationship between the failure area of the solar arrays and the area of the spalling area, the perforation area, the kinetic energy of the projectile as well as the impact position are analyzed. It is found that the ratio of failure area to peeling area is between 7 and 37, and the ratio of failure area to perforation area is between 50 and 150. The failure area in the center of the solar cell is significantly larger than that on the edge or at the connection of the solar cell. Failure area of solar array $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ and the cube root of kinetic energy E ($ E=\mathrm{\pi }\rho {d}^{3}{v}^{2}/12 $) is consistent. In order to establish the accurate equation of power loss area with projectile diameter and impact velocity, in this paper it is assumed that there is a power exponential relationship among them, and then solve the undetermined coefficient by the data fitting method. Finally, we establish the power loss $ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}} $ equation and failure area $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ equation suitable for domestic solar array. The equation will be $ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}}=0.047d{v}^{2/3} $, $ \Delta {S}_{\mathrm{S}\mathrm{A}}=260d{v}^{2/3} $ when the impact occurs in the center of the cell, and $ {\Delta P}_{\mathrm{m}\mathrm{a}\mathrm{x}}=0.033d{v}^{2/3} $, $ \Delta {S}_{\mathrm{S}\mathrm{A}}=180d{v}^{2/3} $ when the impact occurs on the edge or at the connection of the solar cell. The prediction error of the equation is in a range of 13.3%, and the average deviation is 7.6%. This equation can be used to describe the function relationship between the power loss or failure area of the solar arrays and the diameter, impact velocity and impact position of the projectile under the condition of 0° impact angle. The research method in this paper can be used as a reference for the performance degradation assessment of Chinese spacecraft solar panels under the hypervelocity impact of orbital debris, the established power loss equation and failure area equation can predict the law of power decline and failure area of solar array caused by space debris, and the results have important application value for Chinese aerospace engineering.
      Corresponding author: Zheng Jian-Dong, 462840102@qq.com
    • Funds: Project supported by the Specialized Research Program for the Protection against Space Debris of China (Grant No. KJSP06209)
    [1]

    Drolshagen G, Mcdonnell T, Mandeville J C, Moussic A 2006 Acta Astron. 58 471Google Scholar

    [2]

    Medina D F, Wright L, Campbell M 2001 Advances in Space Research 28 1347Google Scholar

    [3]

    Mcdonnell J A, Catling D J, Herbert M K, Clegg R. A 2001 Int. J. Impact Engin. 26 487Google Scholar

    [4]

    Stansbery E G, Foster J L 2004 Advances in Space Research 34 878Google Scholar

    [5]

    Drolshagen G, Mcdonnell J A 1995 Advances in Space Research 16 85

    [6]

    Moussi A, Drolshagen G, Mcdonnell J A M, Mandeville J C, Kearsley A T, Ludwig H 2005 Advances in Space Research 35 1243Google Scholar

    [7]

    Graham G A, Mcbride N, Kearsley A T, Drolshagen G, Green S. F, Mcdonnell J A M, Grady M M, Wright I P 2001 Int. J. Impact Engin. 26 263Google Scholar

    [8]

    Kearsley A T, Graham G A, Mcdonnell J A M, Taylor E A, Drolshagen G, Chater R J, McPhail D, Burchell M J 2007 Advances in Space Research 39 590Google Scholar

    [9]

    Christie R J, Best S R, Myhre C A 1994 Hypervelocity Impact Testing of Space Station Freedom Solar Cell (NASA Center for AeroSpace Information) Report No. NASA-TM-106509

    [10]

    Burt R R, Christiansen E L 2001 Hubble Space Telescope Solar Array Hypervelocity Impact Tests (NASA Johnson Space Center: The Orbital Debris Quarterly News) p2

    [11]

    Burt R R, Christiansen E L 2001 SM Solar Array and SM Cylinder Shield (Zone 10) HVI Tests (NASA Johnson Space Center) Report No. JSC-29485

    [12]

    Herbert M K 1999 Int. J. Impact Engin. 23 377Google Scholar

    [13]

    Stadermann F J, Heiss C H, Reichling M 1997 Advances in Space Research 20 1517Google Scholar

    [14]

    Akahoshi Y, Nakamura T, Fukushige S, Furusawa N, Kusunoki S, Machida Y, Koura T, Watanabe K, Hosoda S, Fujita T, Cho M 2008 Int. J. Impact Engin. 35 1678Google Scholar

    [15]

    Harano T, Machida Y, Fukushige S, Koura, T Hosoda, S Cho, M Akahoshi, Y 2006 Int. J. Impact Engin. 33 326Google Scholar

    [16]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 物理学报 57 7950Google Scholar

    Huang J G, Han J W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar

    [17]

    李宏伟, 黄建国, 韩建伟, 蔡明辉, 李小银, 高著秀 2010 航天器环境工程 27 290Google Scholar

    Li H W, Huang J g, Han J W, Cai M H, Li X Y, Gao Z X 2010 Spacecraft Environment Engineering 27 290Google Scholar

    [18]

    张立佼 2015 硕士学位论文 (沈阳: 沈阳理工大学)

    Zhang L J 2005 M. S. Thesis (Shenyang: Shenyang Ligong University) (in Chinese)

    [19]

    Tang E L, Li Z, Zhang Q M, Wang M, Xiang S H, Liu S H, He L P, Han Y F, Xia J, Wang H L, Xu M Y 2016 Int. J. Appl. Electromagn. Mech 51 337Google Scholar

    [20]

    姜东升, 郑世贵, 马宁, 刘莹, 邱羽玲 2017 航天器工程 26 114Google Scholar

    Jiang D S, Zheng S G, Ma N, Liu Y, Qiu Y L 2017 Spacecraft Engineering 26 114Google Scholar

    [21]

    张书锋, 柴昊, 周玉新, 张明志, 刘振风, 王田 2016 爆炸与冲击 36 386Google Scholar

    Zhang S F, Chai H, Zhou Y X, Zhang M Z, Liu Z F, Wang T 2016 Explosion and Shock Waves 36 386Google Scholar

    [22]

    郑建东, 牛锦超, 钟红仙, 龚自正, 曹燕 2019 物理学报 68 220201Google Scholar

    Zheng J D, Niu J C, Zhong H X, Gong Z Z, Cao Y 2019 Acta Phys. Sin. 68 220201Google Scholar

  • 图 1  太阳电池阵组件试件

    Figure 1.  Experimental speicmen: Solar array cells and carbon fiber honeycomb plate.

    图 2  试验参数

    Figure 2.  Test parameters.

    图 3  试件(a) No.1和(b) No.12试验前的伏安特性曲线

    Figure 3.  Volt-ampere characteristic curve of (a) No.1 and (b) No.12 solar arrays before test

    图 4  试件No.1试验后的(a)损伤形貌和(b)伏安特性曲线

    Figure 4.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.1 solar arrays.

    图 5  试件No.5试验后的(a)损伤形貌和(b)伏安特性曲线

    Figure 5.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.5 solar arrays.

    图 6  试件No.6试验后的(a)损伤形貌和(b)伏安特性曲线

    Figure 6.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.6 solar arrays.

    图 7  试件No.7试验后的(a)损伤形貌和(b)伏安特性曲线

    Figure 7.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.7 solar arrays.

    图 8  试件No.8试验后的(a)损伤形貌和(b)伏安特性曲线(因红色圆圈内受到弹托撞击较大, 损失一定功率, 去除弹托影响, 最大输出功率由1.37 W, 修正为1.39 W)

    Figure 8.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.8 solar arrays (The maximum output power is revised from 1.37 W to 1.39 W to reduce the effect from sabot impact, since the power in the red cycle has lost caused by sabot impact).

    图 9  试件No.11试验后的(a)损伤形貌和(b)伏安特性曲线

    Figure 9.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.11 solar arrays.

    图 10  试件No.12试验后的(a)损伤形貌和(b)伏安特性曲线

    Figure 10.  (a) Damage morphology and (b) volt-ampere characteristic curve of No.12 solar arrays.

    图 11  (a)穿孔区域与(b)剥落区域边界(No.1)

    Figure 11.  Measured parameters of (a) perforation hole area and (b) conchoidal area (No.1)

    图 12  哈勃望远镜太阳电池阵电池面超高速撞击穿孔形貌[1,6]

    Figure 12.  A front-back perforation of the solar arrays exposed on the Hubble space telescope caused by orbital debris impact[1,6].

    图 13  电池阵失效面积$ {\Delta S}_{\mathrm{S}\mathrm{A}} $与剥落区面积$ {S}_{\mathrm{c}} $的关系

    Figure 13.  Relationship between failure area of solar array $ {\Delta S}_{\mathrm{S}\mathrm{A}} $ and conchoidal area $ {S}_{\mathrm{c}} $

    图 14  电池阵失效面积$ \Delta {S}_{\mathrm{S}\mathrm{A}} $与穿孔面积$ {S}_{\mathrm{h}} $的关系

    Figure 14.  Relationship between failure area of solar array $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ and hole area $ {S}_{\mathrm{h}} $.

    图 15  电池阵失效面积$ \Delta {S}_{\mathrm{S}\mathrm{A}} $与弹丸动能E的关系

    Figure 15.  Relationship between failure area of solar array $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ and kinetic energy of projectile E

    图 16  电池阵功率损失面积与试验数据的关系

    Figure 16.  Relationship between power loss area of solar array and test data.

    图 17  电池阵失效面积$ \Delta {S}_{\mathrm{S}\mathrm{A}} $与试验数据的关系

    Figure 17.  Relationship between failure area of solar array $ \Delta {S}_{\mathrm{S}\mathrm{A}} $ and test data.

    表 1  试验结果

    Table 1.  Test result

    试验编号测试序号弹丸直径
    d/mm
    弹丸速度
    v/(km·s–1)
    穿孔面积Sh/mm2剥落面积Sc/mm2试验前最大输出
    功率$ {P}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{0} $/W
    试验后最大输出
    功率$ {P}_{\mathrm{m}\mathrm{a}\mathrm{x}}^{1} $/W
    失效面积SSA/mm2撞击点
    位置
    No.1511-ZJD-1-83.043.2112.0252.171.801.531482A
    No.5511-ZJD-1-55.004.1031.24125.681.791.163478A
    No.6511-ZJD-1-75.005.2434.97150.221.821.113855A
    No.7511-ZJD-1-64.026.5827.01107.511.821.113855A
    No.8511-ZJD-1-45.003.2531.88288.021.801.39*2251B
    No.11511-ZJD-2-24.045.1324.49261.872.121.771872C
    No.12511-ZJD-2-15.003.2137.35129.282.101.731998C
    注: *为修正后数据; 由于穿孔边缘受到微量纤维遮挡, 穿孔面积为显微镜测量值基础上, 加上1%—3%的修正量.
    DownLoad: CSV

    表 2  功率损失方程的精度

    Table 2.  Accuracy of power loss equation

    试件编号156781112
    偏差–13.2%+4.7%+0.1%+7.0%+13.3%–11.7%+3.2%
    DownLoad: CSV
  • [1]

    Drolshagen G, Mcdonnell T, Mandeville J C, Moussic A 2006 Acta Astron. 58 471Google Scholar

    [2]

    Medina D F, Wright L, Campbell M 2001 Advances in Space Research 28 1347Google Scholar

    [3]

    Mcdonnell J A, Catling D J, Herbert M K, Clegg R. A 2001 Int. J. Impact Engin. 26 487Google Scholar

    [4]

    Stansbery E G, Foster J L 2004 Advances in Space Research 34 878Google Scholar

    [5]

    Drolshagen G, Mcdonnell J A 1995 Advances in Space Research 16 85

    [6]

    Moussi A, Drolshagen G, Mcdonnell J A M, Mandeville J C, Kearsley A T, Ludwig H 2005 Advances in Space Research 35 1243Google Scholar

    [7]

    Graham G A, Mcbride N, Kearsley A T, Drolshagen G, Green S. F, Mcdonnell J A M, Grady M M, Wright I P 2001 Int. J. Impact Engin. 26 263Google Scholar

    [8]

    Kearsley A T, Graham G A, Mcdonnell J A M, Taylor E A, Drolshagen G, Chater R J, McPhail D, Burchell M J 2007 Advances in Space Research 39 590Google Scholar

    [9]

    Christie R J, Best S R, Myhre C A 1994 Hypervelocity Impact Testing of Space Station Freedom Solar Cell (NASA Center for AeroSpace Information) Report No. NASA-TM-106509

    [10]

    Burt R R, Christiansen E L 2001 Hubble Space Telescope Solar Array Hypervelocity Impact Tests (NASA Johnson Space Center: The Orbital Debris Quarterly News) p2

    [11]

    Burt R R, Christiansen E L 2001 SM Solar Array and SM Cylinder Shield (Zone 10) HVI Tests (NASA Johnson Space Center) Report No. JSC-29485

    [12]

    Herbert M K 1999 Int. J. Impact Engin. 23 377Google Scholar

    [13]

    Stadermann F J, Heiss C H, Reichling M 1997 Advances in Space Research 20 1517Google Scholar

    [14]

    Akahoshi Y, Nakamura T, Fukushige S, Furusawa N, Kusunoki S, Machida Y, Koura T, Watanabe K, Hosoda S, Fujita T, Cho M 2008 Int. J. Impact Engin. 35 1678Google Scholar

    [15]

    Harano T, Machida Y, Fukushige S, Koura, T Hosoda, S Cho, M Akahoshi, Y 2006 Int. J. Impact Engin. 33 326Google Scholar

    [16]

    黄建国, 韩建伟, 李宏伟, 蔡明辉, 李小银 2008 物理学报 57 7950Google Scholar

    Huang J G, Han J W, Li H W, Cai M H, Li X Y 2008 Acta Phys. Sin. 57 7950Google Scholar

    [17]

    李宏伟, 黄建国, 韩建伟, 蔡明辉, 李小银, 高著秀 2010 航天器环境工程 27 290Google Scholar

    Li H W, Huang J g, Han J W, Cai M H, Li X Y, Gao Z X 2010 Spacecraft Environment Engineering 27 290Google Scholar

    [18]

    张立佼 2015 硕士学位论文 (沈阳: 沈阳理工大学)

    Zhang L J 2005 M. S. Thesis (Shenyang: Shenyang Ligong University) (in Chinese)

    [19]

    Tang E L, Li Z, Zhang Q M, Wang M, Xiang S H, Liu S H, He L P, Han Y F, Xia J, Wang H L, Xu M Y 2016 Int. J. Appl. Electromagn. Mech 51 337Google Scholar

    [20]

    姜东升, 郑世贵, 马宁, 刘莹, 邱羽玲 2017 航天器工程 26 114Google Scholar

    Jiang D S, Zheng S G, Ma N, Liu Y, Qiu Y L 2017 Spacecraft Engineering 26 114Google Scholar

    [21]

    张书锋, 柴昊, 周玉新, 张明志, 刘振风, 王田 2016 爆炸与冲击 36 386Google Scholar

    Zhang S F, Chai H, Zhou Y X, Zhang M Z, Liu Z F, Wang T 2016 Explosion and Shock Waves 36 386Google Scholar

    [22]

    郑建东, 牛锦超, 钟红仙, 龚自正, 曹燕 2019 物理学报 68 220201Google Scholar

    Zheng J D, Niu J C, Zhong H X, Gong Z Z, Cao Y 2019 Acta Phys. Sin. 68 220201Google Scholar

  • [1] Xu Ting, Wang Zi-Shuai, Li Xuan-Hua, Sha Wei E. I.. Loss mechanism analyses of perovskite solar cells with equivalent circuit model. Acta Physica Sinica, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [2] Yin Mao-Shu, Yang Guang, Wang Xun-Chun, Fan Bin, Jiang De-Peng, Yang Hong-Dong. Strain-testing research of space solar cell array. Acta Physica Sinica, 2021, 70(19): 198801. doi: 10.7498/aps.70.20210320
    [3] Zheng Jian-Dong, Niu Jin-Chao, Zhong Hong-Xian, Gong Zi-Zheng, Cao Yan. Hypervelocity impact damage properties of solar arrays by using two-stage light gas gun. Acta Physica Sinica, 2019, 68(22): 220201. doi: 10.7498/aps.68.20191132
    [4] Hou Ming-Qiang, Gong Zi-Zheng, Xu Kun-Bo, Zheng Jian-Dong, Cao Yan, Niu Jin-Chao. Experimental study on hypervelocity impact characteristics of density-grade thin-plate. Acta Physica Sinica, 2014, 63(2): 024701. doi: 10.7498/aps.63.024701
    [5] Cai Ming-Hui, Wu Feng-Shi, Li Hong-Wei, Han Jian-Wei. Study on plasma characteristics from hypervelocity impacts by small space debris. Acta Physica Sinica, 2014, 63(1): 019401. doi: 10.7498/aps.63.019401
    [6] Li Hong-Wei, Han Jian-Wei, Cai Ming-Hui, Wu Feng-Shi. Research of small space debris impact induced discharge. Acta Physica Sinica, 2013, 62(22): 229601. doi: 10.7498/aps.62.229601
    [7] Zhao Shou-Ren, Huang Zhi-Peng, Sun Lei, Sun Peng-Chao, Zhang Chuan-Jun, Wu Yun-Hua, Cao Hong, Wang Shan-Li, Chu Jun-Hao. A detailed study of the effect of Schottky barrier on the dark current density-voltage characteristics of CdS/CdTe solar cells. Acta Physica Sinica, 2013, 62(16): 168801. doi: 10.7498/aps.62.168801
    [8] Qu Jun-Rong, Zheng Jian-Bang, Wang Chun-Feng, Wu Guang-Rong, Hao Juan. Investigation on characteristics of solar cells made of MOPPV/ZnSe quantum dots composite system. Acta Physica Sinica, 2013, 62(7): 078802. doi: 10.7498/aps.62.078802
    [9] Huang Jiam-Guo, Liu Dan-Qiu, Gao Zhu-Xiu, Li Hong-Wei, Cai Ming-Hui, Han Jian-Wei. Simulation of culmulated microimpacts of micro debris to solar cells and function degradation. Acta Physica Sinica, 2012, 61(2): 029601. doi: 10.7498/aps.61.029601
    [10] Gao Zhu-Xiu, Li Hong-Wei, Cai Ming-Hui, Liu Dan-Qiu, Huang Jian-Guo, Han Jian-Wei. Discharging of charged material initiated by impacting of hypervelocity small debris. Acta Physica Sinica, 2012, 61(3): 039601. doi: 10.7498/aps.61.039601
    [11] Li Ying-De, Li Zong-Liang, Leng Jian-Cai, Li Wei, Wang Chuan-Kui. Theoretical study on switching characteristic of photoisomers. Acta Physica Sinica, 2011, 60(7): 073101. doi: 10.7498/aps.60.073101
    [12] Huang Yang, Dai Song-Yuan, Chen Shuang-Hong, Hu Lin-Hua, Kong Fan-Tai, Kou Dong-Xing, Jiang Nian-Quan. Model for series resistance photovoltaic performance of large-scale dye-sensitized solar cells. Acta Physica Sinica, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [13] Ma Song-Shan, Zhu Jia, Xu Hui, Guo Rui. Base pairs composition, on-site energies of electrode and DNA-metal coupling effects on current-voltage characteristic of DNA molecule. Acta Physica Sinica, 2010, 59(10): 7458-7462. doi: 10.7498/aps.59.7458
    [14] Li Hong-Wei, Han Jian-Wei, Huang Jian-Guo, Cai Ming-Hui, Li Xiao-Yin, Gao Zhu-Xiu. Method for measuring the particle velocity using plasma produced by hypervelocity impact. Acta Physica Sinica, 2010, 59(2): 1385-1390. doi: 10.7498/aps.59.1385
    [15] Liu Yong-Sheng, Yang Wen-Hua, Zhu Yan-Yan, Chen Jing, Yang Zheng-Long, Yang Jin-Huan. Design of new nano anti-reflection coating for space silicon solar cells. Acta Physica Sinica, 2009, 58(7): 4992-4996. doi: 10.7498/aps.58.4992
    [16] Zhao Hui-Jie, He Shi-Yu, Sun Yan-Zheng, Sun Qiang, Xiao Zhi-Bin, Lü Wei, Huang Cai-Yong, Xiao Jing-Dong, Wu Yi-Yong. Effect of 100 keV proton irradiation on photoemission of GaAs/Ge space solar cells. Acta Physica Sinica, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [17] Zhang Yan, Gu Biao, Wang Wen-Chun, Peng Xu-Wen, Wang De-Zhen. Current-voltage relationship for homogeneous dielectric barrier discharge in helium and nitrogen at atmospheric pressure. Acta Physica Sinica, 2009, 58(8): 5532-5538. doi: 10.7498/aps.58.5532
    [18] Huang Jian-Guo, Han Jian-Wei, Li Hong-Wei, Cai Ming-Hui, Li Xiao-Yin. Investigation on the surface damage to solar cells by impacts of space micro-debris on low earth orbit. Acta Physica Sinica, 2008, 57(12): 7950-7954. doi: 10.7498/aps.57.7950
    [19] Weng Jian, Xiao Shang-Feng, Chen Shuang-Hong, Dai Song-Yuan. Research on the dye-sensitized solar cell module. Acta Physica Sinica, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [20] Ma Yong, Zou Bin, Li Zong-Liang, Wang Chuan-Kui, Luo Yi. Theoretical studies on electronic transport properties of six-membered heterocyclic molecules. Acta Physica Sinica, 2006, 55(4): 1974-1978. doi: 10.7498/aps.55.1974
Metrics
  • Abstract views:  2812
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  09 March 2021
  • Accepted Date:  06 May 2021
  • Available Online:  07 June 2021
  • Published Online:  20 September 2021

/

返回文章
返回