Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Control of DNA polymerase gp5 chain substitution by DNA double strand annealing pressure

Jia Qi Fan Qin-Kai Hou Wen-Qing Yang Chen-Guang Wang Li-Bang Wang Hao Xu Chun-Hua Li Ming Lu Ying

Citation:

Control of DNA polymerase gp5 chain substitution by DNA double strand annealing pressure

Jia Qi, Fan Qin-Kai, Hou Wen-Qing, Yang Chen-Guang, Wang Li-Bang, Wang Hao, Xu Chun-Hua, Li Ming, Lu Ying
PDF
HTML
Get Citation
  • DNA polymerase is essential for DNA replication and repair. As it only performs the 5′-3′ polymerization, there are two kinds of DNA replication. One of them is called strand-displacement synthesis: DNA polymerase opens the double-strand (ds) DNA to attain the 3′-5′strand (leading strand) and copy this template in a continuous way, and the other is extension synthesis: DNA polymerase copies the newly separated 5′-3′ strand (lagging strand) in a discontinuous manner. The replication complex of T7 phage is an optimal model to investigate the mechanism of replication because it is only constituted by 4 terms of protein which are DNA helicase gp4, DNA polymerase gp5 with co-factor thioredoxin (Trx), and single-strand (ss) DNA-binding protein gp2.5. The replication complex of T7 encounters both strand-displacement synthesis and extension synthesis. Previous researches reported that gp5 can have rapid extension synthesis but lacks the ability to attain strand-displacement synthesis. It also reported that gp4 translocates on ssDNA at a rapid speed but unwinds dsDNA at a very low speed. However, gp5 and gp4 together can attain rapid and processive strand-displacement synthesis. Although extensively studied, this mechanism remains unclear. Here in this work, the dynamic of strand-displacement synthesis by gp5 is investigated with single-molecule Förster (fluorescence) resonance energy transfer (smFRET). It is found that gp5, without the help of external tension, can open dsDNA but only attain strand-displacement synthesis about 4 base pairs (bp), because its exonuclease activity excises the nascent nucleotides. Therefore gp5 repeats in the synthesis-excision cycle which results in the less production of strand-displacement synthesis. We conduct another control experiment by nano-tensioner, a high precision smFRET setup which can exert a tension on dsDNA, to change the dsDNA regression pressure on gp5. It is observed that reduced dsDNA regression pressure can increase the length of strand-displacement synthesis and reduce the length of excision which indicates that the dsDNA regression pressure can regulate the strand-displacement synthesis of gp5. The further experiment shows that after gp5 and gp4 are assembled into a replisome, it can have a processive strand-displacement synthesis and barely any excision presented. The speed of replisome is a little higher than gp5 alone but much higher than gp4 alone. Additionally, the length of strand-displacement synthesis by replisome is much longer than gp5 alone. Therefore it is indicated that the gp4 can reduce dsDNA regression pressure to enables gp5 to attain processive strand-displacement synthesis. On the other hand, the gp5 facilitates gp4 to unwind the dsDNA.
      Corresponding author: Lu Ying, yinglu@iphy.ac.cn
    • Funds: Project supported by the National Science Foundation of China (Grant Nos. 12090051, 11834018, 12022409), the CAS Key Research Program of Frontier Sciences, China (Grant No. QYZDJ-SSW-SYS014), and the Youth Innovation Promotion Association of CAS (Grant No. 2017015)
    [1]

    Benkovic S J, Valentine A M, Salinas F 2001 Annu. Rev. Biochem. 70 181Google Scholar

    [2]

    O'Donnell M 2006 J. Biol. Chem. 281 10653Google Scholar

    [3]

    Pandey M, Syed S, Donmez I, Patel G, Ha T, Patel S S 2009 Nature 462 940Google Scholar

    [4]

    Sun B, Pandey M, Inman J T, Yang Y, Kashlev M, Patel S S, Wang M D 2015 Nat. Commun. 6 10260Google Scholar

    [5]

    Kath J E, Jergic S, Heltzel J M, Jacob D T, Dixon N E, Sutton M D, Walker G C, Loparo J J 2014 Proc. Natl. Acad. Sci. U.S.A. 111 7647Google Scholar

    [6]

    Nandakumar D, Pandey M, Patel S S 2015 Elife 4 e06562Google Scholar

    [7]

    Pandey M, Patel S S 2014 Cell Rep. 6 1129Google Scholar

    [8]

    Syed S, Pandey M, Patel S S, Ha T 2014 Cell Rep. 6 1037Google Scholar

    [9]

    Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, Zhou Z H, Yang W 2019 Science 363 eaav7003Google Scholar

    [10]

    Stano N M, Jeong Y J, Donmez I, Tummalapalli P, Levin M K, Patel S S 2005 Nature 435 370Google Scholar

    [11]

    Manosas M, Spiering M M, Ding F, Bensimon D, Allemand J F, Benkovic S J, Croquette V 2012 Nucleic Acids Res. 40 6174Google Scholar

    [12]

    Lin W, Ma J, Nong D, Xu C, Zhang B, Li J, Jia Q, Dou S, Ye F, Xi X, Lu Y, Li M 2017 Phys. Rev. Lett. 119 138102Google Scholar

    [13]

    Ma J B, Jia Q, Xu C H, Li J H, Huang X Y, Ma D F, Li M, Xi X G, Lu Y 2018 J. Phys. Chem. B 122 5790Google Scholar

    [14]

    黄星榞, 隋明宇, 侯文清, 李明, 陆颖, 徐春华 2020 物理学报 69 208706Google Scholar

    Huang X Y, Sui M Y, Hou W Q, Li M, Lu Y, Xu C H 2020 Acta Phys. Sin. 69 208706Google Scholar

    [15]

    Kim D E, Narayan M, Patel S S 2002 J. Mol. Biol. 321 807Google Scholar

    [16]

    Ma J B, Chen Z, Xu C H, Huang X Y, Jia Q, Zou Z Y, Mi C Y, Ma D F, Lu Y, Zhang H D, Li M 2020 Nucleic Acids Res. 48 3156Google Scholar

    [17]

    Schwartz J J, Quake S R 2009 Proc. Natl. Acad. Sci. U.S.A. 106 20294Google Scholar

    [18]

    Ha T 2001 Methods 25 78Google Scholar

    [19]

    Etson C M, Hamdan S M, Richardson C C, van Oijen A M 2010 Proc. Natl. Acad. Sci. U.S.A. 107 1900Google Scholar

    [20]

    Ibarra B, Chemla Y R, Plyasunov S, Smith S B, Lazaro J M, Salas M, Bustamante C 2009 EMBO J. 28 2794Google Scholar

    [21]

    Hoekstra T P, Depken M, Lin S N, Cabanas-Danes J, Gross P, Dame R T, Peterman E J G, Wuite G J L 2017 Biophys. J. 112 575Google Scholar

    [22]

    Johansson E, Dixon N 2013 Cold Spring Harb. Perspect. Biol. 5 a012799Google Scholar

    [23]

    Derbyshire V, Freemont P S, Sanderson M R, Beese L, Friedman J M, Joyce C M, Steitz T A 1988 Science 240 199Google Scholar

    [24]

    Lam W C, Van der Schans E J, Joyce C M, Millar D P 1998 Biochemistry 37 1513Google Scholar

    [25]

    Graham J E, Marians K J, Kowalczykowski S C 2017 Cell 169 1201Google Scholar

    [26]

    陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖 2018 物理学报 67 118201Google Scholar

    Chen Z, Ma J-B, Huang X Y, Jia Q, Xu C H, Zhang H D, Lu Y 2018 Acta Phys. Sin. 67 118201Google Scholar

  • 图 1  exo+ gp5和exo gp5的PAGE实验 (a)电泳实验的DNA, 在引物链5′端标记有Alexa488; (b) 对Alexa488照明得到的结果: 第1个条带为DNA的原始长度, 第2个条带是exo+ gp5合成1 min后的结果, 第3个条带是exo gp5合成1 min后的结果, 第4个条带是exo+ gp5合成5 min后的结果, 第5个条带是exo gp5合成5 min后的结果

    Figure 1.  PAGE assays of exo+ gp5 and exo gp5. (a) Illustration of DNA that used in PAGE assays. Alexa488 is labeled on the 5′ overhand of primer DNA. (b) Results of various condition. The first lane: Original length of the DNA. The second lane: The synthesis-product of exo+ gp5 with 1 minute. The third lane: The synthesis-product of exo gp5 with 1 minute. The fourth lane: The synthesis-product of exo+ gp5 with 5 minute. The fifth lane: The synthesis-product of exo gp5 with 5 minute.

    图 2  T7 DNA聚合酶gp5不断重复链置换和外切 (a), (b)没有结合辅助因子Trx时聚合酶无法链置换DNA双链; (c), (d)有辅助因子Trx时聚合酶能够部分链置换DNA, 但是会回退; (e), (f)外切活性突变后的gp5不会再外切; (g) exo+ gp5 + Trx实验中合成长度的统计图, 其分布满足单e指数; (h) exo+ gp5 + Trx实验中外切长度的统计图, 其分布满足单e指数

    Figure 2.  T7 DNA polymerase gp5 repeats in synthesis-excision cycle: (a), (b) exo+ gp5 cannot have displacement synthesis without co-factor Trx; (c), (d) gp5 with Trx repeats in synthesis-excision cycle; (e), (f) exo gp5 attain full-length displacement synthesis without excision; (g) histogram of synthesis processivity from assay of exo+ gp5 + Trx, the distribution is well fit by an exponential; (h) histogram of excision processivity from assay of exo+ gp5+ Trx, the distribution is well fit by an exponential.

    图 4  T7 DNA解旋酶帮助聚合酶克服退火压力 (a) gp4, exo+ gp5和Trx共同链置换的示意图, (b) gp4, exo+ gp5和Trx共同链置换时的典型曲线; (c) exo+ gp5 + Trx + gp4可以完全链置换; (d)不同情况的链置换速度

    Figure 4.  gp4 decrease DNA regression pressure which facilitate gp5 to attain processive strand-displacement synthesis: (a) Illustration of displacement by gp4, exo+ gp5 and Trx; (b) typical trace from assay of gp4, exo+ gp5 and Trx; (c) exo+ gp5 + Trx + gp4 attain processive synthesis; (d) synthesis speed in various condition.

    图 3  T7 DNA聚合酶gp5外切的原因是退火压力 (a)纳米张力器示意图; (b) 纳米张力器实验的典型曲线; (c) exo+ gp5 + Trx在受力后合成长度的统计图, 其分布满足单e指数; (d) exo+ gp5 + Trx受力后外切长度的统计图, 其分布满足单e指数

    Figure 3.  DNA regression pressure induced exonuclease activity: (a) Illustration of nanotensionior; (b) typical trace from assay of nanotensionior; (c) histogram of synthesis processivity from assay of exo+ gp5 + Trx with tension, the distribution is well fit by an exponential; (d) histogram of excision processivity from assay of exo+ gp5 + Trx with tension, the distribution is well fit by an exponential.

    图 5  T7 DNA聚合酶不同情况链置换时的模型 (a) 野生型gp5单独链置换时进入链置换和外切的循环; (b) 野生型gp5在gp4的帮助下, 没有外切的出现可以持续链置换

    Figure 5.  Model for gp5 strand displacement activity in various condition: (a) exo+ gp5 repeats in synthesis-excision cycle; (b) gp4 facilitate exo+ gp5 to attain processive strand-displacement synthesis.

  • [1]

    Benkovic S J, Valentine A M, Salinas F 2001 Annu. Rev. Biochem. 70 181Google Scholar

    [2]

    O'Donnell M 2006 J. Biol. Chem. 281 10653Google Scholar

    [3]

    Pandey M, Syed S, Donmez I, Patel G, Ha T, Patel S S 2009 Nature 462 940Google Scholar

    [4]

    Sun B, Pandey M, Inman J T, Yang Y, Kashlev M, Patel S S, Wang M D 2015 Nat. Commun. 6 10260Google Scholar

    [5]

    Kath J E, Jergic S, Heltzel J M, Jacob D T, Dixon N E, Sutton M D, Walker G C, Loparo J J 2014 Proc. Natl. Acad. Sci. U.S.A. 111 7647Google Scholar

    [6]

    Nandakumar D, Pandey M, Patel S S 2015 Elife 4 e06562Google Scholar

    [7]

    Pandey M, Patel S S 2014 Cell Rep. 6 1129Google Scholar

    [8]

    Syed S, Pandey M, Patel S S, Ha T 2014 Cell Rep. 6 1037Google Scholar

    [9]

    Gao Y, Cui Y, Fox T, Lin S, Wang H, de Val N, Zhou Z H, Yang W 2019 Science 363 eaav7003Google Scholar

    [10]

    Stano N M, Jeong Y J, Donmez I, Tummalapalli P, Levin M K, Patel S S 2005 Nature 435 370Google Scholar

    [11]

    Manosas M, Spiering M M, Ding F, Bensimon D, Allemand J F, Benkovic S J, Croquette V 2012 Nucleic Acids Res. 40 6174Google Scholar

    [12]

    Lin W, Ma J, Nong D, Xu C, Zhang B, Li J, Jia Q, Dou S, Ye F, Xi X, Lu Y, Li M 2017 Phys. Rev. Lett. 119 138102Google Scholar

    [13]

    Ma J B, Jia Q, Xu C H, Li J H, Huang X Y, Ma D F, Li M, Xi X G, Lu Y 2018 J. Phys. Chem. B 122 5790Google Scholar

    [14]

    黄星榞, 隋明宇, 侯文清, 李明, 陆颖, 徐春华 2020 物理学报 69 208706Google Scholar

    Huang X Y, Sui M Y, Hou W Q, Li M, Lu Y, Xu C H 2020 Acta Phys. Sin. 69 208706Google Scholar

    [15]

    Kim D E, Narayan M, Patel S S 2002 J. Mol. Biol. 321 807Google Scholar

    [16]

    Ma J B, Chen Z, Xu C H, Huang X Y, Jia Q, Zou Z Y, Mi C Y, Ma D F, Lu Y, Zhang H D, Li M 2020 Nucleic Acids Res. 48 3156Google Scholar

    [17]

    Schwartz J J, Quake S R 2009 Proc. Natl. Acad. Sci. U.S.A. 106 20294Google Scholar

    [18]

    Ha T 2001 Methods 25 78Google Scholar

    [19]

    Etson C M, Hamdan S M, Richardson C C, van Oijen A M 2010 Proc. Natl. Acad. Sci. U.S.A. 107 1900Google Scholar

    [20]

    Ibarra B, Chemla Y R, Plyasunov S, Smith S B, Lazaro J M, Salas M, Bustamante C 2009 EMBO J. 28 2794Google Scholar

    [21]

    Hoekstra T P, Depken M, Lin S N, Cabanas-Danes J, Gross P, Dame R T, Peterman E J G, Wuite G J L 2017 Biophys. J. 112 575Google Scholar

    [22]

    Johansson E, Dixon N 2013 Cold Spring Harb. Perspect. Biol. 5 a012799Google Scholar

    [23]

    Derbyshire V, Freemont P S, Sanderson M R, Beese L, Friedman J M, Joyce C M, Steitz T A 1988 Science 240 199Google Scholar

    [24]

    Lam W C, Van der Schans E J, Joyce C M, Millar D P 1998 Biochemistry 37 1513Google Scholar

    [25]

    Graham J E, Marians K J, Kowalczykowski S C 2017 Cell 169 1201Google Scholar

    [26]

    陈泽, 马建兵, 黄星榞, 贾棋, 徐春华, 张慧东, 陆颖 2018 物理学报 67 118201Google Scholar

    Chen Z, Ma J-B, Huang X Y, Jia Q, Xu C H, Zhang H D, Lu Y 2018 Acta Phys. Sin. 67 118201Google Scholar

  • [1] Gao Fan, Yuan Peng, Huang Hao-Bin, Kou Qi, Jia Qing, Yuan Xiao-Hui, Zhang Zhe, Zhang Jie, Zheng Jian. Cross beam energy transfer and backward stimulated Brillouin scattering in double-cone ignition experiment. Acta Physica Sinica, 2023, 72(17): 175203. doi: 10.7498/aps.72.20230442
    [2] Fan Qin-Kai, Yang Chen-Guang, Hu Shu-Xin, Xu Chun-Hua, Li Ming, Lu Ying. Single-molecular surface-induced fluorescence attenuation based on thermal reduced graphene oxide. Acta Physica Sinica, 2023, 72(14): 147801. doi: 10.7498/aps.72.20230450
    [3] Luo Ze-Wei, Wu Ge, Chen Zhi, Deng Chi-Nan, Wan Rong, Yang Tao, Zhuang Zheng-Fei, Chen Tong-Sheng. Dual-channel structured illumination super-resolution quantitative fluorescence resonance energy transfer imaging. Acta Physica Sinica, 2023, 72(20): 208701. doi: 10.7498/aps.72.20230853
    [4] Ma Dong-Fei, Hou Wen-Qing, Xu Chun-Hua, Zhao Chun-Yu, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Ma Lu, Liu Cong, Li Ming, Lu Ying. Investigation of structure and dynamics of α-synuclein on membrane by quenchers-in-a-liposome fluorescence resonance energy transfer method. Acta Physica Sinica, 2020, 69(3): 038701. doi: 10.7498/aps.69.20191607
    [5] Li Dong-Yang, Zhang Yuan-Xian, Ou Yong-Xiong, Pu Xiao-Yun. Optofluidic fluorescence resonance energy transfer lasing in a polydimethylsiloxane microfluidic channel. Acta Physica Sinica, 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [6] Lu Yue, Ma Jian-Bing, Teng Cui-Juan, Lu Ying, Li Ming, Xu Chun-Hua. Binding process between E.coli SSB and ssDNA by single-molecule dynamics. Acta Physica Sinica, 2018, 67(8): 088201. doi: 10.7498/aps.67.20180109
    [7] Teng Cui-Juan, Lu Yue, Ma Jian-Bing, Li Ming, Lu Ying, Xu Chun-Hua. Interaction between Sso7d and DNA studied by single-molecule technique. Acta Physica Sinica, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [8] Chen Ze, Ma Jian-Bing, Huang Xing-Yuan, Jia Qi, Xu Chun-Hua, Zhang Hui-Dong, Lu Ying. T7 helicase unwinding and stand switching investigated via single-molecular technology. Acta Physica Sinica, 2018, 67(11): 118201. doi: 10.7498/aps.67.20180501
    [9] Qin Ya-Qiang, Chen Rui-Yun, Shi Ying, Zhou Hai-Tao, Zhang Guo-Feng, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang. The role of chain conformation in energy transfer properties of single conjugated polymer molecule. Acta Physica Sinica, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [10] Lü Xi-Ming, Li Hui, You Jing, Li Wei, Wang Peng-Ye, Li Ming, Xi Xu-Guang, Dou Shuo-Xing. An optimization algorithm for single-molecule fluorescence resonance (smFRET) data processing. Acta Physica Sinica, 2017, 66(11): 118701. doi: 10.7498/aps.66.118701
    [11] Xiao Shi-Yan, Liang Hao-Jun. DNA and DNA computation based on toehold-mediated strand-displacement reactions. Acta Physica Sinica, 2016, 65(17): 178106. doi: 10.7498/aps.65.178106
    [12] Li Mu-Ye, Li Fang, Wei Lai, He Zhi-Cong, Zhang Jun-Pei, Han Jun-Bo, Lu Pei-Xiang. Fluorescence resonance energy transfer in a aqueous system of CdTe quantum dots and Rhodamine B with two-photon excitation. Acta Physica Sinica, 2015, 64(10): 108201. doi: 10.7498/aps.64.108201
    [13] He Zhi-Cong, Li Fang, Li Mu-Ye, Wei Lai. Fluorescence resonance energy transfer between CdTe quantum dots and copper phthalocyanine. Acta Physica Sinica, 2015, 64(4): 046802. doi: 10.7498/aps.64.046802
    [14] Geng Du-Yan, Xie Hong-Juan, Wan Xiao-Wei, Xu Gui-Zhi. Study on regulatory network of proteins based on DNA damage. Acta Physica Sinica, 2014, 63(1): 018702. doi: 10.7498/aps.63.018702
    [15] Wang Shuang, Zheng Hai-Zi, Zhao Zhen-Ye, Lu Yue, Xu Chun-Hua. A pair of high resolution magnetic tweezers with illumination of total reflection evanescent field and its application in the study of DNA helicases. Acta Physica Sinica, 2013, 62(16): 168703. doi: 10.7498/aps.62.168703
    [16] Pang Zhe, Wang Shuang, Li Hui, Xu Chun-Hua, Li Ming. A study on the mechanism of RecA in homologous recognition by using single molecule fluorescence tracking. Acta Physica Sinica, 2012, 61(21): 218701. doi: 10.7498/aps.61.218701
    [17] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Deng Chao-Sheng, Guo Ai-Min. The localized properties of electronic states and conductivity of DNA sequence. Acta Physica Sinica, 2006, 55(10): 5562-5567. doi: 10.7498/aps.55.5562
    [18] Ma Song-Shan, Xu Hui, Liu Xiao-Liang, Guo Ai-Min. Characteristics of the electronic structure of DNA sequence. Acta Physica Sinica, 2006, 55(6): 3170-3174. doi: 10.7498/aps.55.3170
    [19] Wei Zhi-Yong, Zang Li-Hui, Li Ming, Fan Wo, Xu Yu-Jie. Fragmentation in DNA double-strand breaks. Acta Physica Sinica, 2005, 54(10): 4955-4960. doi: 10.7498/aps.54.4955
    [20] Wu Shi-Ying, Zhang Yi, Lei Xiao-Ling, Hu Jun, Ai Xiao-Bai, Li Min-Qian. . Acta Physica Sinica, 2002, 51(8): 1887-1891. doi: 10.7498/aps.51.1887
Metrics
  • Abstract views:  4100
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  14 April 2021
  • Accepted Date:  07 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 August 2021

/

返回文章
返回