搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子回旋共振等离子体密度均匀性的数值研究

高碧荣 刘悦

引用本文:
Citation:

电子回旋共振等离子体密度均匀性的数值研究

高碧荣, 刘悦

Numerical study on uniformity of electron cyclotron resonance plasma density

Gao Bi-Rong, Liu Yue
PDF
导出引用
  • 基于漂移扩散近似,在轴对称假设下,对电子回旋共振等离子体源腔室内的等离子体建立了二维流体模型.采用有限差分法对所建立的模型进行了自洽数值模拟,得到了等离子体密度均匀性随时间演化的数值结果.通过对数值结果的分析,研究了背景气体压强、微波功率和磁场线圈电流对等离子体密度均匀性的影响.研究表明,在电离初期,电子密度的均匀性好于离子密度的均匀性.在电离后期,离子密度的均匀性好于电子密度的均匀性.随着背景气体压强的增大,电子密度和离子密度的均匀性都在增加,且离子密度的均匀性增加的更快.随着微波功率的增大,电子密度和
    Based on drift-diffusion approximation and under axis-symmetric assumption, a two-dimensional(2D) fluid model is established for the plasma in the chamber of electron cyclotron resonance plasma source. A finite difference method is used for self-consistent numerically simulating the model. Numerical results of uniformity evolution of plasma density are obtained. From the analysis of the numerical results, the effects of background gas pressure, microwave power and current in magnetic field coil on uniformity of the plasma density are studied. The results shows that during the initial ionization, the uniformity of electron density is better than that of ion density. During the later ionization, the uniformity of ion density is better than that of electron density. As background gas pressure increases, the uniformities of both electron and ion densities increase, and the uniformity of ion density increases faster. As microwave power increases, the uniformities of both electron and ion densities increase with almost the same rates. As current in magnetic field coil increases, the uniformities of both electron and ion densities increase at almost the same rates. However, when the current in magnetic field coil becomes big enough, the uniformities of both electron and ion densities decrease at almost of same rates.
    [1]

    Asmussen J 1989 J. Vac. Sci. Technol. A 7 883

    [2]

    Ning Z Y,Ren Z X 1992 Prog. Phys. 12 38 (in Chinese) [宁兆元、任兆杏 1992 物理学进展 12 38]

    [3]

    Erckmann V, Gasparino U 1994 Plasma Phys. Controlled Fusion 36 1869

    [4]

    England A C 1984 IEEE Trans. Plasma Sci. 12 124

    [5]

    Eldridge O C,England A C 1989 Nucl. Fusion 29 1583

    [6]

    Abrakov V V, Akulina D K, Andryukhina E D, Batanov G M, Berezhetskij M S, Danilkin I S, Donskaya N P, Fedyanin O I, Gladkov G A, Grebenshchikov S E, Harris J H, Kharchev N K, Kholnov Y V, Kolik L V, Kovrizhnykh L M, Larionova N F, Letunov A A, Likin K M, Lyon J F, Meshcheryakov A I, Nechaev Y I, Petrov A E, Sarksyan K A, Sbitnikova I S 1997 Nucl. Fusion 37 233

    [7]

    Gong Y, Wen X J, Zhang P Y, Deng X L 1997 Acta Phys. Sin. 46 2376 (in Chinese) [宫 野、温晓军、张鹏云、邓新绿 1997 物理学报 46 2376]

    [8]

    Liu M H, Hu X W, Wu Q C, Yu G Y 2000 Acta Phys. Sin. 49 497 (in Chinese)[刘明海、胡希伟、邬钦崇、俞国扬 2000 物理学报 49 497]

    [9]

    Muta H,Itagaki N, Kawai Y 2002 Vacuum 66 209

    [10]

    Muta H,Koga M,Itagaki N,Kawai Y 2003 Surf. Coat. Technol. 171 157

    [11]

    Chen J F, Wu X Q, Wang D Q, Ding Z F, Ren Z X 1999 Acta Phys. Sin. 48 1309 (in Chinese) [陈俊芳、吴先球、王德秋、丁振峰、任兆杏 1999 物理学报 48 1309]

    [12]

    Fu S L, Chen J F, Wu X Q, Wang N X, Zhang M P, Hu S J 2006 Plasma Sci. Tech. 8 300 (in Chinese) [符斯列、陈俊芳、吴先球、王宁星、张茂平、胡社军 2006 等离子体科学与技术 8 300]

    [13]

    Liu Y, Wang Y X, Cui S Y, Wang X D, Zheng S, Wang X G 2006 Vacuum 80 1367

    [14]

    Porteous R K, Wu H M, Graves D B 1994 Plasma Sources Sci. Technol. 3 25

  • [1]

    Asmussen J 1989 J. Vac. Sci. Technol. A 7 883

    [2]

    Ning Z Y,Ren Z X 1992 Prog. Phys. 12 38 (in Chinese) [宁兆元、任兆杏 1992 物理学进展 12 38]

    [3]

    Erckmann V, Gasparino U 1994 Plasma Phys. Controlled Fusion 36 1869

    [4]

    England A C 1984 IEEE Trans. Plasma Sci. 12 124

    [5]

    Eldridge O C,England A C 1989 Nucl. Fusion 29 1583

    [6]

    Abrakov V V, Akulina D K, Andryukhina E D, Batanov G M, Berezhetskij M S, Danilkin I S, Donskaya N P, Fedyanin O I, Gladkov G A, Grebenshchikov S E, Harris J H, Kharchev N K, Kholnov Y V, Kolik L V, Kovrizhnykh L M, Larionova N F, Letunov A A, Likin K M, Lyon J F, Meshcheryakov A I, Nechaev Y I, Petrov A E, Sarksyan K A, Sbitnikova I S 1997 Nucl. Fusion 37 233

    [7]

    Gong Y, Wen X J, Zhang P Y, Deng X L 1997 Acta Phys. Sin. 46 2376 (in Chinese) [宫 野、温晓军、张鹏云、邓新绿 1997 物理学报 46 2376]

    [8]

    Liu M H, Hu X W, Wu Q C, Yu G Y 2000 Acta Phys. Sin. 49 497 (in Chinese)[刘明海、胡希伟、邬钦崇、俞国扬 2000 物理学报 49 497]

    [9]

    Muta H,Itagaki N, Kawai Y 2002 Vacuum 66 209

    [10]

    Muta H,Koga M,Itagaki N,Kawai Y 2003 Surf. Coat. Technol. 171 157

    [11]

    Chen J F, Wu X Q, Wang D Q, Ding Z F, Ren Z X 1999 Acta Phys. Sin. 48 1309 (in Chinese) [陈俊芳、吴先球、王德秋、丁振峰、任兆杏 1999 物理学报 48 1309]

    [12]

    Fu S L, Chen J F, Wu X Q, Wang N X, Zhang M P, Hu S J 2006 Plasma Sci. Tech. 8 300 (in Chinese) [符斯列、陈俊芳、吴先球、王宁星、张茂平、胡社军 2006 等离子体科学与技术 8 300]

    [13]

    Liu Y, Wang Y X, Cui S Y, Wang X D, Zheng S, Wang X G 2006 Vacuum 80 1367

    [14]

    Porteous R K, Wu H M, Graves D B 1994 Plasma Sources Sci. Technol. 3 25

计量
  • 文章访问数:  7767
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-22
  • 修回日期:  2010-06-24
  • 刊出日期:  2011-02-05

/

返回文章
返回