搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超薄栅超短沟LDD nMOSFET中栅电压对栅致漏极泄漏电流影响研究

陈海峰 过立新

引用本文:
Citation:

超薄栅超短沟LDD nMOSFET中栅电压对栅致漏极泄漏电流影响研究

陈海峰, 过立新

Influence of gate voltage on gate-induced drain leakage current in ultra-thin gate oxide and ultra-short channel LDD nMOSFET's

Chen Hai-Feng, Guo Li-Xin
PDF
导出引用
  • 本文研究了90nm CMOS工艺下栅氧化层厚度为1.4 nm沟道长度为100 nm的轻掺杂漏(LDD)nMOSFET栅电压VG对栅致漏极泄漏 (GIDL)电流Id的影响,发现不同VG下ln (Id/(VDG-1.2))-1/(VDG-1.2)曲线相比大尺寸厚栅器件时发生了分裂现象. 通过比较VG变化下ln(Id/(VDG-1.2))的差值,得出VG与这种分裂现象之间的作用机理,分裂现象的产生归因于VG的改变影响了GIDL电流横向空穴隧穿部分所致. 随着|VG|的变小,ln(Id/(VDG-1.2))曲线的斜率的绝对值变小.进一步发现不同VG对应的ln (Id/(VDG-1.2))曲线的斜率c及截距d与VG呈线性关系,c,d曲线的斜率分别为3.09和-0.77. c与d定量的体现了超薄栅超短沟器件中VG对GIDL电流的影响,基于此,提出了一个引入VG 影响的新GIDL电流关系式.
    The influence of gate voltage VG on gate induced drain leakage (GIDL) current is studied in LDD nMOSFET with a gate oxide of 1.4nm and a channel length of 100nm. It is found that the split phenomena of ln(Id/(VDG-1.2))-1/(VDG-1.2) curves under different VG values occurs, which are different from the large MOSFET. Through comparing varieties of ln(Id/(VDG-1.2)) of different VG values, the mechanism of this split phenomenon is obtained. This is ascribed to the change of the hole-tunneling part of GIDL current under different VG values. The absolute value of ln(Id/(VDG-1.2)) curve slope decrease with |VG| value decreasing . It is further found that the values of slope c and intercept d of ln(Id/(VDG-1.2)) curves are linear with VG and the slopes of c and d are 3.09 and -0.77, respectively. The values of c and d quantificationally show the influence of VG on the GIDL current in an ultra-thin ultra-short MOSFET. On the basis of these results, a new GIDL current model including VG is proposed.
    • 基金项目: 西安应用材料创新基金(批准号: XA-AM-201012)和西安邮电学院青年教师科研基金(批准号: ZL2010-19)资助的课题.
    • Funds: Project supported by the Xi’an Applied Materials Innovation Fund (Grants No. XA-AM-201012) and the Research Foundation of Xi’an University of Posts and Telecommunications for Young Teacher(Grant No. ZL2010-19).
    [1]

    Choi Y K, Ha Daewon, King T J, Bokor J 2003 Jan. J. Appl. Phys. 42 2073

    [2]

    Ma X H, Hao Y R, Gao H X, Chen H F, Hao Y 2009 Appl. Phys. Lett. 95 152107

    [3]

    Chen H F, Cao Y, Ma X H, 2007 Acta Phys. Sin. 56 1662(in Chinese) [陈海峰, 郝跃, 马晓华 2007 物理学报 56 1662]

    [4]

    Chang M C, Lin J P, Lai C S, Chang R D, Shih S N, Wang M Y, Lee P 2005 IEEE Trans. Electron Devices 52 484

    [5]

    Liu H X, Zheng X F, Hao Y 2005 Acta Phys. Sin. 54 5867(in Chinese)[刘红侠, 郑雪峰, 郝跃 2005 物理学报 54 5867]

    [6]

    Fossum J G, Kim K, Chong Y 1999 IEEE Trans. Electron Devices 46 2195

    [7]

    Larcher L, Pavan P, Eitan B 2004 IEEE Trans. Electron Devices 51 1593

    [8]

    Kumar P B, Sharma R, Nair P R, Ma S 2007 IEEE Trans. Electron Devices 54 98

    [9]

    Han JW, Ryu SW, Choi S J, Choi Y K 2009 IEEE Electron Device Lett. 30 189

    [10]

    Choi S J, Han J , Kim C, Kim S, Choi Y 2009 IEEE Trans. Electron Devices 56 3228

    [11]

    Chen J, Chen T Y, Chen I C, Ko P, Hu C 1987 IEEE Electron Device Lett. 8 515

    [12]

    Lo G Q, Joshi A B, Kwong D L 1991 IEEE Electron Device Lett. 12 6

    [13]

    Semenov O, Pradzynski A, Sachdev M 2002 IEEE Trans. Semiconductor Manufacturing 15 11

    [14]

    Wang T H, Chang T E, Chiang L P, Wang C H, Zous N K, Huang C 1998 IEEE Trans. Electron Devices 45 1511

    [15]

    Guo J C, Liu Y C. Chou M H, Wang M T, Shone F 1998 IEEE Trans. Electron Devices 45 1518

    [16]

    Chan T Y, Chen J, KO P K, Hu C 1987 IEDM Tech. Dig. 718

    [17]

    Wann H , Ko K P, Hu C 1992 IEDM Tech. Dig. 150

  • [1]

    Choi Y K, Ha Daewon, King T J, Bokor J 2003 Jan. J. Appl. Phys. 42 2073

    [2]

    Ma X H, Hao Y R, Gao H X, Chen H F, Hao Y 2009 Appl. Phys. Lett. 95 152107

    [3]

    Chen H F, Cao Y, Ma X H, 2007 Acta Phys. Sin. 56 1662(in Chinese) [陈海峰, 郝跃, 马晓华 2007 物理学报 56 1662]

    [4]

    Chang M C, Lin J P, Lai C S, Chang R D, Shih S N, Wang M Y, Lee P 2005 IEEE Trans. Electron Devices 52 484

    [5]

    Liu H X, Zheng X F, Hao Y 2005 Acta Phys. Sin. 54 5867(in Chinese)[刘红侠, 郑雪峰, 郝跃 2005 物理学报 54 5867]

    [6]

    Fossum J G, Kim K, Chong Y 1999 IEEE Trans. Electron Devices 46 2195

    [7]

    Larcher L, Pavan P, Eitan B 2004 IEEE Trans. Electron Devices 51 1593

    [8]

    Kumar P B, Sharma R, Nair P R, Ma S 2007 IEEE Trans. Electron Devices 54 98

    [9]

    Han JW, Ryu SW, Choi S J, Choi Y K 2009 IEEE Electron Device Lett. 30 189

    [10]

    Choi S J, Han J , Kim C, Kim S, Choi Y 2009 IEEE Trans. Electron Devices 56 3228

    [11]

    Chen J, Chen T Y, Chen I C, Ko P, Hu C 1987 IEEE Electron Device Lett. 8 515

    [12]

    Lo G Q, Joshi A B, Kwong D L 1991 IEEE Electron Device Lett. 12 6

    [13]

    Semenov O, Pradzynski A, Sachdev M 2002 IEEE Trans. Semiconductor Manufacturing 15 11

    [14]

    Wang T H, Chang T E, Chiang L P, Wang C H, Zous N K, Huang C 1998 IEEE Trans. Electron Devices 45 1511

    [15]

    Guo J C, Liu Y C. Chou M H, Wang M T, Shone F 1998 IEEE Trans. Electron Devices 45 1518

    [16]

    Chan T Y, Chen J, KO P K, Hu C 1987 IEDM Tech. Dig. 718

    [17]

    Wann H , Ko K P, Hu C 1992 IEDM Tech. Dig. 150

  • [1] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [2] 周子童, 闫韶华, 赵巍胜, 冷群文. 隧穿磁阻传感器研究进展. 物理学报, 2022, 71(5): 058504. doi: 10.7498/aps.71.20211883
    [3] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型. 物理学报, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [4] 费宏明, 周飞, 杨毅彪, 梁九卿. 光子晶体双量子阱的共振隧穿. 物理学报, 2011, 60(7): 074225. doi: 10.7498/aps.60.074225
    [5] 罗小光, 何济洲. 摇摆型棘齿热电子隧穿制冷. 物理学报, 2011, 60(9): 090506. doi: 10.7498/aps.60.090506
    [6] 刘凡宇, 刘衡竹, 刘必慰, 梁斌, 陈建军. 90 nm CMOS工艺下p+深阱掺杂浓度对电荷共享的影响. 物理学报, 2011, 60(4): 046106. doi: 10.7498/aps.60.046106
    [7] 吴华英, 张鹤鸣, 宋建军, 胡辉勇. 单轴应变硅nMOSFET栅隧穿电流模型. 物理学报, 2011, 60(9): 097302. doi: 10.7498/aps.60.097302
    [8] 曹辉, 赵清. 双势阱中冷原子的关联隧穿. 物理学报, 2010, 59(4): 2187-2192. doi: 10.7498/aps.59.2187
    [9] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射. 物理学报, 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [10] 周远明, 俞国林, 高矿红, 林铁, 郭少令, 褚君浩, 戴宁. 弱耦合GaAs/AlGaAs/InGaAs双势阱隧穿结构的磁隧穿特性研究. 物理学报, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [11] 林恺, 杨树政. Vaidya-Bonner黑洞的费米子隧穿. 物理学报, 2009, 58(2): 744-748. doi: 10.7498/aps.58.744
    [12] 朱樟明, 钱利波, 杨银堂. 一种基于纳米级CMOS工艺的互连线串扰RLC解析模型. 物理学报, 2009, 58(4): 2631-2636. doi: 10.7498/aps.58.2631
    [13] 李 睿, 王庆东. 工艺导致的机械应力对深亚微米CMOS器件的影响. 物理学报, 2008, 57(7): 4497-4507. doi: 10.7498/aps.57.4497
    [14] 陈海峰, 郝 跃, 马晓华, 唐 瑜, 孟志琴, 曹艳荣, 周鹏举. 超薄栅下LDD nMOSFET器件GIDL应力下退化特性. 物理学报, 2007, 56(3): 1662-1667. doi: 10.7498/aps.56.1662
    [15] 蒋青权, 吴双清. Kerr解的新形式及其隧穿辐射. 物理学报, 2006, 55(9): 4428-4432. doi: 10.7498/aps.55.4428
    [16] 张靖仪, 赵 峥. 静质量不为零的粒子的量子隧穿辐射. 物理学报, 2006, 55(7): 3796-3798. doi: 10.7498/aps.55.3796
    [17] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [18] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [19] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [20] 赵 毅, 万星拱. 0.18μm CMOS工艺栅极氧化膜可靠性的衬底和工艺依存性. 物理学报, 2006, 55(6): 3003-3006. doi: 10.7498/aps.55.3003
计量
  • 文章访问数:  6358
  • PDF下载量:  550
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-28
  • 修回日期:  2011-05-20
  • 刊出日期:  2012-01-05

/

返回文章
返回