搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

绝缘栅双极型晶体管感性负载关断下电压变化率的建模与仿真研究

谭骥 朱阳军 卢烁今 田晓丽 滕渊 杨飞 张广银 沈千行

引用本文:
Citation:

绝缘栅双极型晶体管感性负载关断下电压变化率的建模与仿真研究

谭骥, 朱阳军, 卢烁今, 田晓丽, 滕渊, 杨飞, 张广银, 沈千行

Modeling and simulation of the insulated gate bipolar transistor turn-off voltage slope under inductive load

Tan Ji, Zhu Yang-Jun, Lu Shuo-Jin, Tian Xiao-Li, Teng Yuan, Yang Fei, Zhang Guang-Yin, Shen Qian-Xing
PDF
导出引用
  • 绝缘栅双极型晶体管(IGBT)多用于感性负载下的电力电子线路中. 这导致了在器件关断过程中集电极电压上升阶段时集电极电流仍然保持在额定电流值,从而造成大量的能量损耗. 集电极电压的上升过程可以看作是栅极电流对集电极与栅极之间的电容(即米勒电容)充电的过程. 本文提出一种解析模型,通过计算米勒电容值随时间的变化来预测IGBT在关断过程中集电极电压值的变化. 在对米勒电容的计算上,不仅考虑了电容值与其端电压之间的依赖关系,同时也考虑到关断过程中耗尽区存在的大量载流子对电容值的影响,使得模型更加准确. 最后,运用数值计算仿真软件对绝缘栅双极型晶体管的关断过程进行了模拟,对本文提出的模型进行了验证. 仿真结果与模型计算结果显示出良好的一致性.
    The insulated gate bipolar transistor (IGBT) has developed rapidly as a key power device for medium power application since it was first introduced. It is well known for its relatively low conduction loss and easy gate control. The IGBT is commonly seen in the inductive load application circuit. Due to the large inductive load, the current of the IGBT will stay high until the voltage rises to the bus voltage during the IGBT turn-off. After that, the current starts to decrease and IGBT goes into the tail-current procedure withstanding high voltage. When evaluating the turn-off loss of IGBT, the fall time and the tail current are commonly taken into consideration because these two features are known as good representations of power loss during tail-current procedure. However, the power loss occurring during the voltage rise, which is usually neglected, can also be a significant contributor to the total turn-off loss. The dv/dt determines the voltage rise time and the power loss during this procedure. Thus, predicting the dv/dt is essential for evaluating the power loss during the IGBT turn-off. In this paper, the turn-off transient is divided into four stages and the physical mechanism which determines the dv/dt during the turn-off transient is carefully investigated. An analytical model to characterize the dv/dt during IGBT inductive turn-off is derived based on the calculated miller capacitance values. The functions of the miller capacitance and the dv/dt against time are presented to predict the collector voltage waveform during the IGBT turn-off. To make the model more accurate, the current dependence is considered when calculating the miller capacitance as well as the voltage dependency. The derived model shows that the dv/dt increases nonlinearly with the time going by and can be influenced by several factors, including the drive circuit conditions, the collector current and the carrier concentration profile in the ON-state. Further investigation indicates that the ON-state carrier concentration is greatly influenced by the IGBT cell structure. Thus, the model presented in this paper is effective in both the estimation of IGBT turn-off loss and the guidance of device structure design. The prediction of the derived model shows good agreement with the two-dimensional numerical simulation by Sentaurus TCAD (with the relative error not exceeding 10%) for the IGBT turn-off over a broad range of the collector current values. The device structure simulated in this paper is based on the 650 V/60 A trench-FS-IGBT. The thickness values of the total structure and the buffer layer are 80 m and 20 m, respectively.
      通信作者: 朱阳军, zhuyangjun@ime.ac.cn
    • 基金项目: 国家重大科技专项(批准号:2013ZX02305-005-002)、国家自然科学基金(批准号:51490681)和省院合作高技术产业化专项资金项目(批准号:2016SYHZ0026)资助的课题.
      Corresponding author: Zhu Yang-Jun, zhuyangjun@ime.ac.cn
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2013ZX02305-005-002), the National Natural Science Foundation of China (Grant No. 51490681), and the Cooperation of Province and Academy Special Funds of High Technology and Industrialization, China (Grant No. 2016SYHZ0026).
    [1]

    Lwamoto H, Kondo H, Yu Y, Kawakami A, Nakaoka M 2001 IEE Proc. -Electr. Power Appl. 148 443

    [2]

    Eckel H G, Fleisch K 2008 13th International Power Electronics and Motion Control Conference Poznan, Poland, September 1-3, 2008 p48

    [3]

    Ramamurthy A, Sawant S, Baliga B J 1999 IEEE Trans. Power Electron. 14 601

    [4]

    Hefner A R, Blackburn D L 1988 Solid-State Electron 31 1513

    [5]

    Hefner A R 1990 IEEE Trans. Power Electron. 5 459

    [6]

    Bryant A, Yang S Y, Mawby P, Xiang D W, Ran L, Tavner P, Palmer P R 2011 IEEE Trans. Power Electron. 26 3019

    [7]

    Trivedi M, Shenai K 1997 IEEE Trans. Electron Dev. 44 887

    [8]

    Zhang J P, Li Z H, Zhang B, Li Z J 2014 Chin. Phys. B 23 088504

    [9]

    Wang H, Zhang B 2010 International Conference on Communications, Circuits and Systems (ICCCAS) Chengdu, China, July 28-30, 2010 p532

    [10]

    Eio S, Shammas N Y A 2008 Universities Power Engineering Conference Padova, Italy, September 1-4, 2008 p1

    [11]

    Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer) pp390-400

    [12]

    Tominaga S, Urushibata H, Fujita H, Akagi H, Horiguchi T 2011 Proc. EPE Birmingham, England, August 30-September 1, 2011 p1

    [13]

    Yang X, Otsuki M, Palmer P R 2015 IET Power Electron. 8 417

  • [1]

    Lwamoto H, Kondo H, Yu Y, Kawakami A, Nakaoka M 2001 IEE Proc. -Electr. Power Appl. 148 443

    [2]

    Eckel H G, Fleisch K 2008 13th International Power Electronics and Motion Control Conference Poznan, Poland, September 1-3, 2008 p48

    [3]

    Ramamurthy A, Sawant S, Baliga B J 1999 IEEE Trans. Power Electron. 14 601

    [4]

    Hefner A R, Blackburn D L 1988 Solid-State Electron 31 1513

    [5]

    Hefner A R 1990 IEEE Trans. Power Electron. 5 459

    [6]

    Bryant A, Yang S Y, Mawby P, Xiang D W, Ran L, Tavner P, Palmer P R 2011 IEEE Trans. Power Electron. 26 3019

    [7]

    Trivedi M, Shenai K 1997 IEEE Trans. Electron Dev. 44 887

    [8]

    Zhang J P, Li Z H, Zhang B, Li Z J 2014 Chin. Phys. B 23 088504

    [9]

    Wang H, Zhang B 2010 International Conference on Communications, Circuits and Systems (ICCCAS) Chengdu, China, July 28-30, 2010 p532

    [10]

    Eio S, Shammas N Y A 2008 Universities Power Engineering Conference Padova, Italy, September 1-4, 2008 p1

    [11]

    Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer) pp390-400

    [12]

    Tominaga S, Urushibata H, Fujita H, Akagi H, Horiguchi T 2011 Proc. EPE Birmingham, England, August 30-September 1, 2011 p1

    [13]

    Yang X, Otsuki M, Palmer P R 2015 IET Power Electron. 8 417

  • [1] 纪婷伟, 白刚. 双轴错配应变对铁电双栅负电容晶体管性能的影响. 物理学报, 2023, 72(6): 067701. doi: 10.7498/aps.72.20222190
    [2] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [3] 芦宾, 王大为, 陈宇雷, 崔艳, 苗渊浩, 董林鹏. 纳米线环栅隧穿场效应晶体管的电容模型. 物理学报, 2021, 70(21): 218501. doi: 10.7498/aps.70.20211128
    [4] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型. 物理学报, 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [5] 陈俊东, 韩伟华, 杨冲, 赵晓松, 郭仰岩, 张晓迪, 杨富华. 铁电负电容场效应晶体管研究进展. 物理学报, 2020, 69(13): 137701. doi: 10.7498/aps.69.20200354
    [6] 巫梦丹, 周胜林, 叶安娜, 王敏, 张晓华, 杨朝晖. 基于中性水凝胶/取向碳纳米管阵列高电压柔性固态超级电容器. 物理学报, 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [7] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理. 物理学报, 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] 王冲, 赵梦荻, 裴九清, 何云龙, 李祥东, 郑雪峰, 毛维, 马晓华, 张进成, 郝跃. AlGaN/GaN双异质结F注入增强型高电子迁移率晶体管. 物理学报, 2016, 65(3): 038501. doi: 10.7498/aps.65.038501
    [9] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管. 物理学报, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [10] 石磊, 冯士维, 石帮兵, 闫鑫, 张亚民. 开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究. 物理学报, 2015, 64(12): 127303. doi: 10.7498/aps.64.127303
    [11] 刘静, 武瑜, 高勇. 沟槽型发射极SiGe异质结双极化晶体管新结构研究. 物理学报, 2014, 63(14): 148503. doi: 10.7498/aps.63.148503
    [12] 赵凯, 牟宗信, 张家良. 同轴介质阻挡放电发生器介质层等效电容和负载特性研究. 物理学报, 2014, 63(18): 185208. doi: 10.7498/aps.63.185208
    [13] 刘翔宇, 胡辉勇, 张鹤鸣, 宣荣喜, 宋建军, 舒斌, 王斌, 王萌. 具有poly-Si1-xGex栅的应变SiGep型金属氧化物半导体场效应晶体管阈值电压漂移模型研究. 物理学报, 2014, 63(23): 237302. doi: 10.7498/aps.63.237302
    [14] 刘宾礼, 唐勇, 罗毅飞, 刘德志, 王瑞田, 汪波. 基于电压变化率的IGBT结温预测模型研究. 物理学报, 2014, 63(17): 177201. doi: 10.7498/aps.63.177201
    [15] 余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生. 新型双异质结高电子迁移率晶体管的电流崩塌效应研究. 物理学报, 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [16] 席善斌, 陆妩, 王志宽, 任迪远, 周东, 文林, 孙静. 中带电压法分离栅控横向pnp双极晶体管辐照感生缺. 物理学报, 2012, 61(7): 076101. doi: 10.7498/aps.61.076101
    [17] 石巍巍, 李雯, 仪明东, 解令海, 韦玮, 黄维. 基于栅绝缘层表面修饰的有机场效应晶体管迁移率的研究进展. 物理学报, 2012, 61(22): 228502. doi: 10.7498/aps.61.228502
    [18] 王鑫华, 赵妙, 刘新宇, 蒲颜, 郑英奎, 魏珂. AlGaN/AlN/GaN高电子迁移率器件的电容电压特性的经验拟合. 物理学报, 2011, 60(4): 047101. doi: 10.7498/aps.60.047101
    [19] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究. 物理学报, 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [20] 刘红侠, 尹湘坤, 刘冰洁, 郝跃. 应变绝缘层上硅锗p型金属氧化物场效应晶体管的阈值电压解析模型. 物理学报, 2010, 59(12): 8877-8882. doi: 10.7498/aps.59.8877
计量
  • 文章访问数:  4613
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-19
  • 修回日期:  2016-04-27
  • 刊出日期:  2016-08-05

/

返回文章
返回