搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于空间碎片探测的百赫兹3.31 J高光束质量全固态Nd:YAG激光器

樊仲维 邱基斯 唐熊忻 白振岙 康治军 葛文琦 王昊成 刘昊 刘悦亮

引用本文:
Citation:

用于空间碎片探测的百赫兹3.31 J高光束质量全固态Nd:YAG激光器

樊仲维, 邱基斯, 唐熊忻, 白振岙, 康治军, 葛文琦, 王昊成, 刘昊, 刘悦亮

A 100 Hz 3.31 J all-solid-state high beam quality Nd:YAG laser for space debris detecting

Fan Zhong-Wei, Qiu Ji-Si, Tang Xiong-Xin, Bai Zhen-Ao, Kang Zhi-Jun, Ge Wen-Qi, Wang Hao-Cheng, Liu Hao, Liu Yue-Liang
PDF
导出引用
  • 基于激光二极管侧面抽运棒状放大器的方式,研制了一台应用于空间碎片探测的高重复频率、高光束质量焦耳级的Nd:YAG纳秒激光器.激光器采用主振荡功率放大的结构,主要包括单纵模种子、预放大单元、受激布里渊散射相位共轭光束控制单元和能量提取单元四部分.在能量提取单元,为了减小热效应对光束质量的影响,降低了放大器的工作电流,采用了分束-放大-合束的方案.在重复频率100 Hz,单纵模种子注入单脉冲能量10.73 J的条件下,获得了3.31 J的能量输出.输出激光的脉冲宽度为4.58 ns,远场光束质量为2.12倍衍射极限,能量稳定性(RMS)为0.87%.
    With the rapid development of space technology, human activities into space are increasing, thereby producing lots of space debris. And the space debris impact is the major cause for the mechanical damage to the space crafts and the main factor affecting the service life; it even endangers the life safety of the astronauts working outside the spacecraft and pose a threat to the astronomical observation and studies. Thus, the monitoring and early warning of space debris are gradually attracting wide attention. Obviously, laser detection as a good-directivity and strong anti-jamming active detecting means has a unique advantage in terms of a round-the-clock detection. Therefore, the developing of debris-detecting laser beam source becomes the most direct and effective means for increasing the space debris detection accuracy. The laser detecting ability is restricted by the laser beam quality, the pulse energy and the repetition frequency at the same time. The beam quality could affect the ability to detect and recognize space target. The bigger the laser pulse energy, the higher the repetition frequency and the smaller the detectable debris, the stronger the detecting ability will be. A good detection effect could be achieved at 80-100 Hz laser pulse repetition frequency. A further increase of the repetition frequency will greatly increase the difficulty and cost accordingly but the improvement of the detection performance is not obvious at all. Thus, repetition frequency around 100 Hz becomes the best choice for laser space debris detection. Based on the laser diode side-pumped rod-shaped amplifier, a high-repetition-frequency and high-beam-quality of joule level Nd:YAG nanosecond laser for space debris detection is developed in this work. The laser adopts MOPA structure, mainly including single longitudinal mode, pre-amplifier unit, SBS phase-conjugate beam control unit and energy extraction unit. In the energy extraction unit, beam splitting-amplifying-combining is adopted for reducing the thermal effect on beam quality by reducing the working current of the amplifier. Under the condition of 100 Hz high repetition frequency and 10.73 J single pulse energy injected by the single longitudinal mode seed, 3.31 J output energy is gained. The output laser beam has a 4.58 ns pulse width, far field beam spot of 2.12 times the value of the diffraction limit, and 0.87% energy stability (RMS).
      通信作者: 樊仲维, fanzhongwei@aoe.ac.cn;keith0311@163.com ; 邱基斯, fanzhongwei@aoe.ac.cn;keith0311@163.com
    • 基金项目: 国家重大科研装备研制项目(批准号:ZDYZ2013-2)、科技部创新人才推进计划重点领域创新团队(批准号:2014RA4051)和中国科学院青年创新促进会资助的课题.
      Corresponding author: Fan Zhong-Wei, fanzhongwei@aoe.ac.cn;keith0311@163.com ; Qiu Ji-Si, fanzhongwei@aoe.ac.cn;keith0311@163.com
    • Funds: Project supported by the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Fundation of China (Grant No. ZDYZ2013-2), China Innovative Talent Promotion Plans for Innovation Team in Priority Fields (Grant No. 2014RA4051), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.
    [1]

    Dong J H, Hu Q Q 2007Chin.Opt.Lett. 5 S176

    [2]

    Nalezyty M, Majczyna A, Wawrzaszek R, Sokolowski M 2010Proc.SPIE 7745 S178

    [3]

    Ma X, Wang J, Zhou J, Zhu X, Chen W 2010Appl.Phys.B 103 809

    [4]

    Zhang Z P, Yang F M, Zhang H F, Wu Z B, Chen J P, Li P, Meng W D 2012Res.Astron.Astrophys. 12 212

    [5]

    Yang H L, Meng J Q, Ma X H, Chen W B 2014Chin.Opt.Lett. 12 96

    [6]

    Yu H H, Gao P Q, Shen M, Guo X Z, Yang D T, Zhao Y 2016Astronomical ResearchTechnology 14 416(in Chinese)[于欢欢, 高鹏骐, 沈鸣, 郭效忠, 杨大陶, 赵有2016天文研究与技术14 416]

    [7]

    Biro E, Weckman D C, Zhou Y 2002Metall.Mater.Trans.A 33 2019

    [8]

    Andrebe Y, Behn R, Duval B P, Etienne P, Pitzschke A 2011Fusion Eng.Des. 86 1273

    [9]

    Kim Y G, Lee J H, Lee J W, An Y H, Dang J J, Jo J M, Lee H Y, Chung K J, Hwang Y S, Na Y S 2015Fusion Eng.Des. 96-97 882

    [10]

    Yoshida H, Nakatsuka M, Hatae T, Kitamura S, Sakuma T, Hamano T 2004Jpn.J.Appl.Phys. 43 L1038

    [11]

    Yang X D, Bo Y, Peng Q J, Zhang H L, Geng A C, Cui Q J, Sun Z P, Cui D F, Xu Z Y 2006Opt.Commun. 226 39

    [12]

    Sun W N, Wang W L, Bi G J, Zhu C, Yang W S 2006Chinese J.Lasers 33(suppl.) 20(in Chinese)[孙维娜, 王伟力, 秘国江, 朱辰, 杨文是2006中国激光33(suppl.) 20]

    [13]

    Qiu J S, Tang X X, Fan Z W, Wang H C 2016Opt.Commun. 368 1

    [14]

    Qiu J S, Tang X X, Fan Z W, Wang H C, Liu H 2016Appl.Opt. 55 21

    [15]

    Qiu J S, Tang X X, Fan Z W, Chen Y Z, Ge W Q, Wang H C, Liu H 2016Acta Phys.Sin. 65 154204(in Chinese)[邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊2016物理学报65 154204]

    [16]

    Hasi W L J, Qiao Z, Cheng S X, Wang X Y, Zhong Z M, Zheng Z X, Lin D Y, He W M, Lu Z W 2013Opt.Commun. 311 375

  • [1]

    Dong J H, Hu Q Q 2007Chin.Opt.Lett. 5 S176

    [2]

    Nalezyty M, Majczyna A, Wawrzaszek R, Sokolowski M 2010Proc.SPIE 7745 S178

    [3]

    Ma X, Wang J, Zhou J, Zhu X, Chen W 2010Appl.Phys.B 103 809

    [4]

    Zhang Z P, Yang F M, Zhang H F, Wu Z B, Chen J P, Li P, Meng W D 2012Res.Astron.Astrophys. 12 212

    [5]

    Yang H L, Meng J Q, Ma X H, Chen W B 2014Chin.Opt.Lett. 12 96

    [6]

    Yu H H, Gao P Q, Shen M, Guo X Z, Yang D T, Zhao Y 2016Astronomical ResearchTechnology 14 416(in Chinese)[于欢欢, 高鹏骐, 沈鸣, 郭效忠, 杨大陶, 赵有2016天文研究与技术14 416]

    [7]

    Biro E, Weckman D C, Zhou Y 2002Metall.Mater.Trans.A 33 2019

    [8]

    Andrebe Y, Behn R, Duval B P, Etienne P, Pitzschke A 2011Fusion Eng.Des. 86 1273

    [9]

    Kim Y G, Lee J H, Lee J W, An Y H, Dang J J, Jo J M, Lee H Y, Chung K J, Hwang Y S, Na Y S 2015Fusion Eng.Des. 96-97 882

    [10]

    Yoshida H, Nakatsuka M, Hatae T, Kitamura S, Sakuma T, Hamano T 2004Jpn.J.Appl.Phys. 43 L1038

    [11]

    Yang X D, Bo Y, Peng Q J, Zhang H L, Geng A C, Cui Q J, Sun Z P, Cui D F, Xu Z Y 2006Opt.Commun. 226 39

    [12]

    Sun W N, Wang W L, Bi G J, Zhu C, Yang W S 2006Chinese J.Lasers 33(suppl.) 20(in Chinese)[孙维娜, 王伟力, 秘国江, 朱辰, 杨文是2006中国激光33(suppl.) 20]

    [13]

    Qiu J S, Tang X X, Fan Z W, Wang H C 2016Opt.Commun. 368 1

    [14]

    Qiu J S, Tang X X, Fan Z W, Wang H C, Liu H 2016Appl.Opt. 55 21

    [15]

    Qiu J S, Tang X X, Fan Z W, Chen Y Z, Ge W Q, Wang H C, Liu H 2016Acta Phys.Sin. 65 154204(in Chinese)[邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊2016物理学报65 154204]

    [16]

    Hasi W L J, Qiao Z, Cheng S X, Wang X Y, Zhong Z M, Zheng Z X, Lin D Y, He W M, Lu Z W 2013Opt.Commun. 311 375

  • [1] 张晓辉, 吴玉迟, 朱斌, 王少义, 闫永宏, 谭放, 于明海, 杨月, 李纲, 张杰, 温家星, 周维民, 粟敬钦, 谷渝秋. 一种低喷气量微气室喷嘴在激光尾场加速中的应用. 物理学报, 2023, 72(3): 035202. doi: 10.7498/aps.72.20221868
    [2] 姚铭杰, 葛文琦, 颜博霞, 张鸿博. 1.3 μm-2.8 ns电光腔倒空Nd:YVO4激光器. 物理学报, 2023, 72(14): 144204. doi: 10.7498/aps.72.20230014
    [3] 文榆钧, 王鹏, 奚小明, 张汉伟, 黄良金, 杨欢, 闫志平, 杨保来, 史尘, 潘志勇, 王小林, 王泽锋, 许晓军. 激光二极管直接后向泵浦的高光束质量万瓦光纤激光器. 物理学报, 2022, 71(24): 244202. doi: 10.7498/aps.71.20221433
    [4] 黄梅婷, 姜银花, 陈钰琦, 李润华. 铋黄铜中微量元素的高重复频率激光剥离-火花诱导击穿光谱定量分析. 物理学报, 2021, 70(10): 104206. doi: 10.7498/aps.70.20202018
    [5] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [6] 安然, 范小贞, 卢建新, 文侨. 高光束质量、高功率稳定性激光器的设计及实验研究. 物理学报, 2018, 67(7): 074201. doi: 10.7498/aps.67.20171932
    [7] 邱基斯, 唐熊忻, 樊仲维, 陈艳中, 葛文琦, 王昊成, 刘昊. 用于汤姆孙散射诊断的高重频高光束质量焦耳级Nd:YAG纳秒激光器. 物理学报, 2016, 65(15): 154204. doi: 10.7498/aps.65.154204
    [8] 刘欢, 巩马理, 曹士英, 林百科, 方占军. 303MHz高重复频率掺Er光纤飞秒激光器. 物理学报, 2015, 64(11): 114210. doi: 10.7498/aps.64.114210
    [9] 窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉. 高重复频率全光纤被动锁模掺铒光纤激光器. 物理学报, 2015, 64(6): 064206. doi: 10.7498/aps.64.064206
    [10] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器. 物理学报, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [11] 韩敬华, 冯国英, 杨李茗, 张秋慧, 傅玉青, 牛瑞华, 朱启华, 谢旭东, 周寿桓. 高重复频率激光脉冲光束大小对吸收玻璃损伤特征的影响. 物理学报, 2011, 60(2): 028106. doi: 10.7498/aps.60.028106
    [12] 刘华刚, 胡明列, 刘博文, 宋有建, 柴路, 王清月. 高功率高重复频率多波长飞秒激光系统的研究. 物理学报, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [13] 黄琳, 代志勇, 刘永智. 不同脉冲重复频率下抽运方式对全光纤声光调Q激光器性能的影响. 物理学报, 2009, 58(10): 6992-6999. doi: 10.7498/aps.58.6992
    [14] 邓青华, 彭翰生, 隋 展, 丁 磊, 李明中, 王建军, 唐 军, 罗亦鸣, 林宏奂, 张 锐, 邓 颖, 卢振华. 高功率激光二极管阵列端面抽运放大器新型耦合方式研究. 物理学报, 2008, 57(10): 6340-6347. doi: 10.7498/aps.57.6340
    [15] 苏宙平, 楼祺洪, 董景星, 周 军, 魏运荣. 改善高功率激光二极管阵列光束质量的一种新方法. 物理学报, 2007, 56(10): 5831-5834. doi: 10.7498/aps.56.5831
    [16] 刘 军, 李小芳, 陈晓伟, 姜永亮, 李儒新, 徐至展. 1 kHz-0.1 TW高效率钛宝石激光放大器. 物理学报, 2007, 56(3): 1375-1378. doi: 10.7498/aps.56.1375
    [17] 张新陆, 王月珠. 能量传递上转换对Tm,Ho:YLF调Q激光器上能级寿命的影响. 物理学报, 2006, 55(3): 1160-1164. doi: 10.7498/aps.55.1160
    [18] 刘艳格, 张春书, 孙婷婷, 鲁云飞, 王 志, 袁树忠, 开桂云, 董孝义. 输出平均功率大于2W的高功率、包层抽运、超短脉冲铒镱共掺光纤激光器. 物理学报, 2006, 55(9): 4679-4685. doi: 10.7498/aps.55.4679
    [19] 张新陆, 王月珠, 鞠有伦. 能量传递上转换对Tm,Ho:YLF激光器阈值的影响. 物理学报, 2005, 54(1): 117-122. doi: 10.7498/aps.54.117
    [20] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 唐映德. 抽运光分布对二极管抽运激光器振荡光光束质量的影响. 物理学报, 2004, 53(9): 2995-3003. doi: 10.7498/aps.53.2995
计量
  • 文章访问数:  5463
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-28
  • 修回日期:  2016-12-13
  • 刊出日期:  2017-03-05

/

返回文章
返回