搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究

贾博仑 邓玲玲 陈若曦 张雅男 房旭民

引用本文:
Citation:

利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究

贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民

Numerical research of emission properties of localized surface plasmon resonance enhanced light-emitting diodes based on Ag@SiO2 nanoparticles

Jia Bo-Lun, Deng Ling-Ling, Chen Ruo-Xi, Zhang Ya-Nan, Fang Xu-Min
PDF
导出引用
  • 金属纳米粒子利用其局域表面等离子体共振效应(LSPR),可以增强附近荧光分子的自发辐射速率,因而在光学传感、光电器件等领域中具有潜在的应用价值.金属纳米粒子的LSPR与其自身的材料、形状、尺寸以及周围环境介质密切相关,这影响着纳米粒子在具体器件中的应用.本文利用三维时域有限差分法,研究了相同体积的球形、椭球形、立方形与三棱柱形银纳米粒子对薄膜发光二极管辐射功率的影响;计算了不同形状银纳米粒子对偶极子光源辐射功率和薄膜器件光出射强度的增强,并结合LSPR效应讨论了辐射功率变化的物理机理.研究结果表明:银纳米粒子自身形状尖锐程度的增加有利于提高LSPR的共振强度;同时纳米粒子的形状影响了LSPR共振电场与薄膜器件中偶极子辐射电场之间的耦合作用,其中立方形纳米粒子因为能实现最强的耦合作用而对器件的辐射功率增强最大.在此基础上进一步讨论了不同薄膜材料对LSPR共振及光源辐射功率的影响,发现较高的材料折射率有利于增强金属纳米粒子的LSPR与器件的耦合作用,从而改善发光二极管性能.
    Metal nanoparticles have potential applications in the fields of optical sensing and optoelectronic devices, due to the localized surface plasmon resonance (LSPR) which enhances the spontaneous emission rate of nearby fluorescent molecules. The LSPR of metal nanoparticles is closely related to its material, shape, size and ambient medium, which affects the applications of nanoparticles in specific devices. In this paper, the LSPR effect of silver nanoparticles (SNPs) with different shapes of sphere, ellipsoid, cube, and triangular-prism, is investigated by using a three-dimensional finite difference time domain. The absorption and scattering spectra of the individual SNPs are first calculated. The resonance peaks are red shifted and enhanced with sharpness increasing from the nano-sphere to the nano-triangular-prism because the surface charges accumulate in the sharp corners. Then the effects of SNPs on the radiation power of the dipole source and light extraction efficiency of the light-emitting diodes (LEDs) are studied. The dipole radiation power decreases near the resonance wavelength due to the absorptions of SNPs, while increases after the resonance wavelength because of the coupling between the SNP LSPR and the dipole radiation. The calculated electric field distribution shows that the LSPR electric field of the SNPs concentrate near the surface of the dielectric film because of the interaction between the SNPs and the film. The concentrated electric field helps to improve the coupling between the LSPR and the dipole, which enhances the dipole radiation power in the LED. In the several kinds of SNPs, nano-cube SNP shows the most significant improvement on the dipole radiation power because of the strongest interaction with the dielectric film. In addition, the scattering effect of the SNP reduces the internal total reflection of light and improves the light extraction efficiency of the LED. Nano-ellipsoid SNP significantly enhances the light extraction because of its strongest scattering intensity. Further, the influence of the refractive index of the dielectric film on the dipole radiation power is studied. It is found that a higher refractive index of dielectric film helps to enhance the interaction between the SNPs and the film and improves the dipole radiation power. The optimized value of refractive index is acquired through detailed calculation.
      通信作者: 邓玲玲, dengll@njupt.edu.cn;fangxm57006@163.com ; 房旭民, dengll@njupt.edu.cn;fangxm57006@163.com
    • 基金项目: 国家自然科学基金(批准号:61505086)资助的课题.
      Corresponding author: Deng Ling-Ling, dengll@njupt.edu.cn;fangxm57006@163.com ; Fang Xu-Min, dengll@njupt.edu.cn;fangxm57006@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505086).
    [1]

    Muller C D, Reckefuss N, Rudati P S, et al. 2004 Proc. SPIE Bellingham 5214 21

    [2]

    Schilinsky P, Waldauf C, Brabec C J 2006 Adv. Funct. Mater. 16 1669

    [3]

    Crawford M H 2009 IEEE J. Select. Topics Quantum Electron. 15 1028

    [4]

    Zhang Y N, Wang J F 2015 Acta Phys. Sin. 64 097801 (in Chinese)[张雅男, 王俊峰 2015 物理学报 64 097801]

    [5]

    Yagi T, Satoh R, Yamada Y, Kang H, Miyao H, Sawa K 2012 J. Soc. Inf. Display 20 526

    [6]

    Ji W Y, Zhang L T, Xie W F 2012 Opt. Lett. 37 2019

    [7]

    Li C 2015 M. S. Thesis (Shanghai:East China Normal University)(in Chinese)[李朝 2015 硕士学位论文 (上海:华东师范大学)]

    [8]

    Margueritat J, Gonzalo J, Afonso C N, Mlayah A, Murray D B, Saviot L 2006 Nano Lett. 6 2037

    [9]

    Gao H W, Henzie J, Odom T W 2006 Nano Lett. 6 2104

    [10]

    Liu F, Nunzi J M 2012 Proc. SPIE Brussels 8424 84243E

    [11]

    Fujiki A, Uemura T, Zettsu N 2010 Appl. Phys. Lett. 96 043307

    [12]

    Xiao Y, Yang J P, Cheng P P, Zhu J J 2012 Appl. Phys. Lett. 100 013308

    [13]

    Xie W F, Xu K, Li Y, Wen X M, Zhang L T 2013 Chin. J. Lumin. 34 535

    [14]

    Tanaka T, Totoki Y, Fujiki A, Zettsu N, Miyake Y 2011 Appl. Phys. Exp. 4 032105

    [15]

    Ma W Y, Yang H, Liu J Y, Ni Z G, Tang D S, Yao J 2010 Acta Opt. Sin. 30 2629

    [16]

    Lin Y, Liu X Q, Wang T, Chen C, Wu H, Liao L, Liu C 2013 Nature Nanotech. 24 125705

    [17]

    Mock J J, Oldcnburg S J, Smith D R 2002 Nano Lett. 2 465

    [18]

    Huang P, Fu Y Q, Du J L, Zhuo C X, Luo X G (in Chinese)[黄鹏, 付永启, 杜惊雷, 周崇喜, 罗先刚 2009 光散射学报 21 157]

    [19]

    Pang Z, Wan L Y, Huang J Q, Ouyang Y F (in Chinese)[庞智,万玲玉,黄继钦,欧阳义芳 2014 光散射学报 26 307]

    [20]

    Sherry L J, Chang S H, Schatz G C, Richard P, van Duyne R P, Wiley B J, Xia Y 2005 Nano Lett. 5 2034

    [21]

    Benjamin J W, Sang H I, Li Z Y, Joeseph M L, Andrew S, Xia Y N 2006 J. Phys. Chem. B 110 15666

    [22]

    Jeffrey M M, Wang Y M, Leif J S, Richard P V D, Laurence D M, Stephen K G, George C S 2009 J. Phys. Chem. C 113 2731

    [23]

    Moon S K, Yang J K 2014 J. Opt. Soc. Korea 18 582

    [24]

    Tu X B, Wang S J (in Chinese)[涂新斌,王思敬 2004 岩土工程学报 26 659]

    [25]

    Aizpurua J, Bryant G W, Richter L J, de Abajo F J G, Kelley B K, Mallouk T 2005 Phys. Rev. B 71 235420

  • [1]

    Muller C D, Reckefuss N, Rudati P S, et al. 2004 Proc. SPIE Bellingham 5214 21

    [2]

    Schilinsky P, Waldauf C, Brabec C J 2006 Adv. Funct. Mater. 16 1669

    [3]

    Crawford M H 2009 IEEE J. Select. Topics Quantum Electron. 15 1028

    [4]

    Zhang Y N, Wang J F 2015 Acta Phys. Sin. 64 097801 (in Chinese)[张雅男, 王俊峰 2015 物理学报 64 097801]

    [5]

    Yagi T, Satoh R, Yamada Y, Kang H, Miyao H, Sawa K 2012 J. Soc. Inf. Display 20 526

    [6]

    Ji W Y, Zhang L T, Xie W F 2012 Opt. Lett. 37 2019

    [7]

    Li C 2015 M. S. Thesis (Shanghai:East China Normal University)(in Chinese)[李朝 2015 硕士学位论文 (上海:华东师范大学)]

    [8]

    Margueritat J, Gonzalo J, Afonso C N, Mlayah A, Murray D B, Saviot L 2006 Nano Lett. 6 2037

    [9]

    Gao H W, Henzie J, Odom T W 2006 Nano Lett. 6 2104

    [10]

    Liu F, Nunzi J M 2012 Proc. SPIE Brussels 8424 84243E

    [11]

    Fujiki A, Uemura T, Zettsu N 2010 Appl. Phys. Lett. 96 043307

    [12]

    Xiao Y, Yang J P, Cheng P P, Zhu J J 2012 Appl. Phys. Lett. 100 013308

    [13]

    Xie W F, Xu K, Li Y, Wen X M, Zhang L T 2013 Chin. J. Lumin. 34 535

    [14]

    Tanaka T, Totoki Y, Fujiki A, Zettsu N, Miyake Y 2011 Appl. Phys. Exp. 4 032105

    [15]

    Ma W Y, Yang H, Liu J Y, Ni Z G, Tang D S, Yao J 2010 Acta Opt. Sin. 30 2629

    [16]

    Lin Y, Liu X Q, Wang T, Chen C, Wu H, Liao L, Liu C 2013 Nature Nanotech. 24 125705

    [17]

    Mock J J, Oldcnburg S J, Smith D R 2002 Nano Lett. 2 465

    [18]

    Huang P, Fu Y Q, Du J L, Zhuo C X, Luo X G (in Chinese)[黄鹏, 付永启, 杜惊雷, 周崇喜, 罗先刚 2009 光散射学报 21 157]

    [19]

    Pang Z, Wan L Y, Huang J Q, Ouyang Y F (in Chinese)[庞智,万玲玉,黄继钦,欧阳义芳 2014 光散射学报 26 307]

    [20]

    Sherry L J, Chang S H, Schatz G C, Richard P, van Duyne R P, Wiley B J, Xia Y 2005 Nano Lett. 5 2034

    [21]

    Benjamin J W, Sang H I, Li Z Y, Joeseph M L, Andrew S, Xia Y N 2006 J. Phys. Chem. B 110 15666

    [22]

    Jeffrey M M, Wang Y M, Leif J S, Richard P V D, Laurence D M, Stephen K G, George C S 2009 J. Phys. Chem. C 113 2731

    [23]

    Moon S K, Yang J K 2014 J. Opt. Soc. Korea 18 582

    [24]

    Tu X B, Wang S J (in Chinese)[涂新斌,王思敬 2004 岩土工程学报 26 659]

    [25]

    Aizpurua J, Bryant G W, Richter L J, de Abajo F J G, Kelley B K, Mallouk T 2005 Phys. Rev. B 71 235420

  • [1] 任兴, 于宏宇, 张勇. 基于BCPO发光材料近紫外有机发光二极管的电致发光效率与稳定性. 物理学报, 2024, 73(4): 047801. doi: 10.7498/aps.73.20231301
    [2] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [3] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应. 物理学报, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [4] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [5] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [6] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [7] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [8] 洪昕, 王晨晨, 刘江涛, 王晓强, 尹雪洁. 芯帽纳米颗粒的光热性质. 物理学报, 2018, 67(19): 195202. doi: 10.7498/aps.67.20180909
    [9] 封波, 邓彪, 刘乐功, 李增成, 冯美鑫, 赵汉民, 孙钱. 等离子体表面处理对硅衬底GaN基蓝光发光二极管内置n型欧姆接触的影响. 物理学报, 2017, 66(4): 047801. doi: 10.7498/aps.66.047801
    [10] 陈湛旭, 万巍, 何影记, 陈耿炎, 陈泳竹. 利用单层密排的纳米球提高发光二极管的出光效率. 物理学报, 2015, 64(14): 148502. doi: 10.7498/aps.64.148502
    [11] 何西, 杜团结, 吴逢铁. 新型发光二极管透镜产生局域空心光束. 物理学报, 2014, 63(7): 074201. doi: 10.7498/aps.63.074201
    [12] 汤益丹, 沈光地, 郭霞, 关宝璐, 蒋文静, 韩金茹. 带介质分布式Bragg反射镜结构高性能共振腔发光二极管的研究. 物理学报, 2012, 61(1): 018503. doi: 10.7498/aps.61.018503
    [13] 陈焕庭, 吕毅军, 高玉琳, 陈忠, 庄榕榕, 周小方, 周海光. 功率型GaN基发光二极管芯片表面温度及亮度分布的物理特性研究. 物理学报, 2012, 61(16): 167104. doi: 10.7498/aps.61.167104
    [14] 董雅娟, 张俊兵, 陈海涛, 曾祥华. 大功率全方位反射镜发光二极管性能研究. 物理学报, 2011, 60(7): 077803. doi: 10.7498/aps.60.077803
    [15] 洪清泉, 余燕忠, 蔡植善, 陈木生, 林顺达. 磁偶极和电四极在磁各向异性介质中的辐射功率. 物理学报, 2010, 59(8): 5235-5240. doi: 10.7498/aps.59.5235
    [16] 李建军, 杨臻, 韩军, 邓军, 邹德恕, 康玉柱, 丁亮, 沈光地. 用于POF的高性能共振腔发光二极管. 物理学报, 2009, 58(9): 6304-6307. doi: 10.7498/aps.58.6304
    [17] 李炳乾, 刘玉华, 冯玉春. 大功率GaN基发光二极管等效串联电阻的功率耗散及其对发光效率的影响. 物理学报, 2008, 57(1): 477-481. doi: 10.7498/aps.57.477
    [18] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究. 物理学报, 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [19] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响. 物理学报, 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [20] 洪 昕, 杜丹丹, 裘祖荣, 张国雄. 半壳结构金纳米膜的局域表面等离子体共振效应. 物理学报, 2007, 56(12): 7219-7223. doi: 10.7498/aps.56.7219
计量
  • 文章访问数:  5132
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-29
  • 修回日期:  2017-08-31
  • 刊出日期:  2017-12-05

/

返回文章
返回