搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究

杨文海 刁文婷 蔡春晓 宋学瑞 冯付攀 郑耀辉 段崇棣

引用本文:
Citation:

1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究

杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣

Comparative study of squeezed vacuum states prepared by using 1064-nm solid-state and fiber-laser as pump source

Yang Wen-Hai, Diao Wen-Ting, Cai Chun-Xiao, Song Xue-Rui, Feng Fu-Pan, Zheng Yao-Hui, Duan Chong-Di
PDF
HTML
导出引用
  • 实验和理论研究了单频固体激光器和单频光纤激光器的相对强度噪声对压缩真空态光场测量精度的影响. 在实验中分别采用单频固体激光器和单频光纤激光器作为实验系统的光源, 直接探测到的压缩真空态光场的压缩度分别为(13.2 ± 0.2) dB和(10 ± 0.2) dB. 通过理论计算得知本实验中影响可测压缩度的主要因素是光源的相对强度噪声, 为实用化的高压缩度压缩真空态光场发生器的研制提供了理论和实验指导.
    Squeezed states, which have fewer fluctuations in one quadrature than vacuum noise at the expense of increasing fluctuations in the other quadrature, can be used to enhance measurement accuracy, increase detection sensitivity, and improve fault tolerance performance for quantum information and quantum computation. In this paper, the influences of relative intensity noise (RIN) of all-solid-state single-frequency laser and single-frequency fiber laser on the squeezing factor of squeezed vacuum states are experimentally and theoretically studied. Here, an all-solid-state single-frequency laser and a single-frequency fiber laser each are used as a light source of the system generating squeezed vacuum states. The homodyne detection is used to compare the RIN of all-solid-state single-frequency laser and that of single-frequency fiber laser at the analysis frequency of 1 MHz. The results show that the RIN of the all-solid-state single-frequency laser and single-frequency fiber laser are higher than those of the shot noise limitation 2.3 dB and 30 dB at the analysis frequency of 1 MHz, respectively. The RIN of all-solid-state single-frequency laser is far less than that of the single-frequency fiber laser. As a result, squeezed vacuum state with maximum quantum noise reduction of (13.2 ± 0.2) dB and (10 ± 0.2) dB are directly detected. Theoretical calculation shows that the influence of the RIN on the measurement accuracy is the major factor of degrading the squeezing factor with the fiber laser as the pump source. The measurement error of squeezed vacuum state caused by the RIN of single-frequency fiber laser is about 2.6 dB. The discrepancy of the pump power between the two lasers is another factor of affecting the squeezing factor, corresponding to 0.6 dB quantum noise difference. The theoretical calculations are consistent with the experimental results, which provides some guidance for developing the practical squeezed states with highly squeezing level.
      通信作者: 郑耀辉, yhzheng@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11654002, 61575114, 61501368, 11505135)、山西省三晋学者特聘教授项目、山西省“1331”重点建设学科和山西省高等学校中青年拔尖创新人才资助的课题.
      Corresponding author: Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11654002, 61575114, 61501368, 11505135), the Program for Sanjin Scholar of Shanxi Province, China, the Fund for Shanxi “1331 Project” Key Subjects Construction, China, and the Program for Outstanding Innovative Teams of Higher Learning Institutions of Shanxi, China.
    [1]

    Yin J, Cao Y, Li Y H 2017 Science 356 1140Google Scholar

    [2]

    霍美如, 秦际良, 孙颍榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134

    Huo M R, Qin J L, Sun Y R, Cheng J L, Yan Z H, Jia X J 2018 Acta Sin. Quantum Opt. 24 134

    [3]

    Bai S, Wang J Y, Qiang J, Zhang L, Wang J J 2014 Opt. Express 22 26462Google Scholar

    [4]

    张逸伦, 蓝天, 高明光, 赵涛, 沈振民 2015 物理学报 64 164201Google Scholar

    Zhang Y L, Lan T, Gao M G, Zhao T, Shen Z M 2015 Acta Phys. Sin. 64 164201Google Scholar

    [5]

    Liu J J, Chang Q, Bao M M, Yuan B, Yang K, Ma Y Q 2018 Chin. Phys. B 26 098102

    [6]

    姜海峰 2018 物理学报 67 160602Google Scholar

    Jiang H F 2018 Acta Phys. Sin. 67 160602Google Scholar

    [7]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [8]

    Lu H D, Su J, Zheng Y H, Peng K C 2014 Opt. Lett. 39 1117Google Scholar

    [9]

    杨文海, 王雅君, 李志秀, 郑耀辉 2014 中国激光 41 0502002

    Yang W H, Wang Y J, Li Z X, Zheng Y H 2014 Chin. J. Laser 41 0502002

    [10]

    严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰 2018 物理学报 67 184201Google Scholar

    Yan X W, Wang Z G, Jiang X Y, Zheng J G, Li M, Jing Y F 2018 Acta Phys. Sin. 67 184201Google Scholar

    [11]

    Xu S H, Yang Z M, Zhang W N, Wei X M, Qian Q, Chen D D, Zhang Q Y, Shen S X, Peng M Y, Qiu J R 2011 Opt. Lett. 36 3708Google Scholar

    [12]

    冯晋霞, 杜京师, 靳小丽, 李渊冀, 张宽收 2018 物理学报 67 174203Google Scholar

    Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203Google Scholar

    [13]

    Wang Y J, Yang W H, Zheng Y H, Peng K C 2015 Chin. Phys. B 24 070303Google Scholar

    [14]

    马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205Google Scholar

    Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205Google Scholar

    [15]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar

    [16]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H, Peng K C 2016 Opt. Lett. 41 3331Google Scholar

    [17]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [18]

    Gardiner C W, Collett M J 1985 Phys. Rev. A 30 3761

    [19]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [20]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859Google Scholar

  • 图 1  本底光RIN测量装置和压缩态光场产生实验系统(SHG, 倍频; EOM, 电光调制器; PZT, 锆钛酸铅压电陶瓷; BHD, 平衡零拍探测器; DBS, 分束镜; OPA, 光参量放大器; LO beam, 本底光; SA, 频谱仪)

    Fig. 1.  Schematic of the experimental setup for measuring the local oscillator intensity noise and generating the squeezed state (SHG, second-harmonic generation; EOM, electro-optic modulator; PZT, piezoelectric ceramic transducer; BHD, balanced homodyne detector; DBS, dichroic beam splitter; OPA, optical parametric amplifier; LO, local oscillator; SA, spectrum analyzer).

    图 2  单频光纤激光器经MC滤除一部分RIN和相位噪声后对应的本底光RIN

    Fig. 2.  RIN of local oscillator with single-frequency Yb3+-doped phosphate fiber laser after MC.

    图 3  单频固体激光器经MC滤除一部分RIN和相位噪声后对应的本底光RIN

    Fig. 3.  RIN of local oscillator with single-frequency Nd:YVO4 laser after MC.

    图 4  单频固体激光器制备的压缩真空态光场的噪声谱, 分析频率1 MHz (分辨带宽RBW = 300 kHz, 视频带宽VBW = 200 Hz)

    Fig. 4.  Balance homodyne measurements of the quadrature noise variances at a Fourier frequency of 1 MHz, with a resolution bandwidth RBW of 300 kHz and a video bandwidth VBW of 200 Hz.

    图 5  单频光纤激光器制备的真空压缩态光场的噪声谱, 分析频率1 MHz (RBW = 300 kHz, VBW = 200 Hz)

    Fig. 5.  Balance homodyne measurements of the quadrature noise variances at a Fourier frequency of 1 MHz, with a RBW of 300 kHz and a NBW of 200 Hz.

  • [1]

    Yin J, Cao Y, Li Y H 2017 Science 356 1140Google Scholar

    [2]

    霍美如, 秦际良, 孙颍榕, 成家霖, 闫智辉, 贾晓军 2018 量子光学学报 24 134

    Huo M R, Qin J L, Sun Y R, Cheng J L, Yan Z H, Jia X J 2018 Acta Sin. Quantum Opt. 24 134

    [3]

    Bai S, Wang J Y, Qiang J, Zhang L, Wang J J 2014 Opt. Express 22 26462Google Scholar

    [4]

    张逸伦, 蓝天, 高明光, 赵涛, 沈振民 2015 物理学报 64 164201Google Scholar

    Zhang Y L, Lan T, Gao M G, Zhao T, Shen Z M 2015 Acta Phys. Sin. 64 164201Google Scholar

    [5]

    Liu J J, Chang Q, Bao M M, Yuan B, Yang K, Ma Y Q 2018 Chin. Phys. B 26 098102

    [6]

    姜海峰 2018 物理学报 67 160602Google Scholar

    Jiang H F 2018 Acta Phys. Sin. 67 160602Google Scholar

    [7]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [8]

    Lu H D, Su J, Zheng Y H, Peng K C 2014 Opt. Lett. 39 1117Google Scholar

    [9]

    杨文海, 王雅君, 李志秀, 郑耀辉 2014 中国激光 41 0502002

    Yang W H, Wang Y J, Li Z X, Zheng Y H 2014 Chin. J. Laser 41 0502002

    [10]

    严雄伟, 王振国, 蒋新颖, 郑建刚, 李敏, 荆玉峰 2018 物理学报 67 184201Google Scholar

    Yan X W, Wang Z G, Jiang X Y, Zheng J G, Li M, Jing Y F 2018 Acta Phys. Sin. 67 184201Google Scholar

    [11]

    Xu S H, Yang Z M, Zhang W N, Wei X M, Qian Q, Chen D D, Zhang Q Y, Shen S X, Peng M Y, Qiu J R 2011 Opt. Lett. 36 3708Google Scholar

    [12]

    冯晋霞, 杜京师, 靳小丽, 李渊冀, 张宽收 2018 物理学报 67 174203Google Scholar

    Feng J X, Du J S, Jin X L, Li Y J, Zhang K S 2018 Acta Phys. Sin. 67 174203Google Scholar

    [13]

    Wang Y J, Yang W H, Zheng Y H, Peng K C 2015 Chin. Phys. B 24 070303Google Scholar

    [14]

    马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205Google Scholar

    Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205Google Scholar

    [15]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar

    [16]

    Li Z X, Ma W G, Yang W H, Wang Y J, Zheng Y H, Peng K C 2016 Opt. Lett. 41 3331Google Scholar

    [17]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [18]

    Gardiner C W, Collett M J 1985 Phys. Rev. A 30 3761

    [19]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262Google Scholar

    [20]

    Jin X L, Su J, Zheng Y H, Chen C Y, Wang W Z, Peng K C 2015 Opt. Express 23 23859Google Scholar

  • [1] 王滔宁, 姜玲玲, 程庭清, 王礼, 江海河. 2.94 μm LiNbO3声光调Q Er:YAG激光输出脉冲特性. 物理学报, 2024, 73(4): 044205. doi: 10.7498/aps.73.20231616
    [2] 段磊, 徐润亲, 宋云波, 谭姝丹, 梁成斌, 徐帆江, 刘朝晖. 基于目标反射回光对高功率光纤激光器影响的理论模型和数值研究. 物理学报, 2023, 72(10): 104203. doi: 10.7498/aps.72.20222464
    [3] 王在渊, 王洁浩, 李宇航, 柳强. 面向空间引力波探测的毫赫兹频段低强度噪声单频激光器. 物理学报, 2023, 72(5): 054205. doi: 10.7498/aps.72.20222127
    [4] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [5] 连天虹, 王石语, 寇科, 刘芸. 离轴抽运厄米-高斯模固体激光器. 物理学报, 2020, 69(11): 114202. doi: 10.7498/aps.69.20200086
    [6] 王聪, 刘杰, 张晗. 基于二维纳米材料的超快脉冲激光器. 物理学报, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [7] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳. 物理学报, 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [8] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [9] 何广源, 郭靖, 焦中兴, 王彪. 固体激光器热透镜效应的调控. 物理学报, 2012, 61(9): 094217. doi: 10.7498/aps.61.094217
    [10] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [11] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
    [12] 李 磊, 赵长明, 张 鹏, 杨苏辉. 激光二极管抽运频差可调谐双频固体激光器的研究. 物理学报, 2007, 56(5): 2663-2669. doi: 10.7498/aps.56.2663
    [13] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性. 物理学报, 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [14] 武丁二, 周 睿, 张晓华, 丁 欣, 姚建铨, 颜彩繁, 张光寅. LD端抽运平直腔Nd:YVO4固态激光器的输出功率特性研究. 物理学报, 2006, 55(3): 1196-1200. doi: 10.7498/aps.55.1196
    [15] 薄 勇, 耿爱丛, 毕 勇, 孙志培, 杨晓东, 李瑞宁, 崔大复, 许祖彦. 高平均功率调Q准连续Nd:YAG激光器. 物理学报, 2006, 55(3): 1171-1175. doi: 10.7498/aps.55.1171
    [16] 柳 强, 巩马理, 潘圆圆, 李 晨. 边缘抽运复合Yb:YAG/YAG薄片激光器设计与功率扩展. 物理学报, 2004, 53(7): 2159-2164. doi: 10.7498/aps.53.2159
    [17] 关 俊, 李金萍, 程光华, 陈国夫, 侯 洵. 端面抽运固体激光器热透镜效应的实验研究. 物理学报, 2004, 53(6): 1804-1809. doi: 10.7498/aps.53.1804
    [18] 尚连聚. 端面抽运固体激光器的腔模匹配分析. 物理学报, 2003, 52(6): 1408-1411. doi: 10.7498/aps.52.1408
    [19] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 薛海中, 唐映德. 激光二极管抽运固体激光器场分布的热不稳定性研究. 物理学报, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [20] 张潮波, 宋峰, 孟凡臻, 丁欣, 张光寅, 商美茹. 利用输出功率测量激光二极管端面抽运的固体激光器热透镜焦距. 物理学报, 2002, 51(7): 1517-1520. doi: 10.7498/aps.51.1517
计量
  • 文章访问数:  6970
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2019-04-18
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回