搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响

魏浩铭 张颖 张宙 吴仰晴 曹丙强

引用本文:
Citation:

极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响

魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强

Influence of polarity compensation on exchange bias field in LaMnO3/LaNiO3 superlattices

Wei Hao-Ming, Zhang Ying, Zhang Zhou, Wu Yang-Qing, Cao Bing-Qiang
PDF
HTML
导出引用
  • 钙钛矿超晶格中蕴含着丰富的磁现象, 特别是锰酸镧/镍酸镧超晶格中的异常磁交换偏置现象是一个研究热点. 本文采用脉冲激光沉积技术, 制备出不同取向的锰酸镧/镍酸镧超晶格, 并对超晶格的电输运性能和交换偏置现象进行了系统的研究. 实验发现, 超晶格在不同取向的衬底上外延生长并保持晶格应力; 超晶格的母体是Mott绝缘体并遵循二维Mott变程跃迁导电机理; 不同取向的超晶格都表现出交换偏置现象; 场冷和零场冷曲线表明在低温下超晶格中存在两种不同的磁性组元. 对超晶格交换场强度的进一步分析发现, 交换场强度与超晶格的取向以及超晶格与衬底界面处的极性补偿有关. 在不同温度下都观察到, 极性连续的超晶格的交换场强度都高于极性失配的超晶格. 上述研究结果对进一步理解钙钛矿超晶格中的磁电输运性能有所帮助.
    Perovskite superlattices have received enormous attention in recent years, for they possess several new phases of quantum matter. In particular, an unexpected exchange bias effect in (111)-oriented superlattices composed of ferromagnetic LaMnO3 and paramagnetic LaNiO3 is observed, which has aroused broad interest. In this work, three kinds of LaMnO3/LaNiO3 superlattices with (001), (110), and (111) out-of-plane orientation are fabricated by pulsed laser deposition, and also studied systemically. It is found that the superlattices are epitaxially grown on the SrTiO3 substrates without strain relaxation. The superlattices have a monolayer terraced structure with a surface roughness below 0.1 nm. Electrical transport measurements reveal a Mott conducting behavior with strong localization of electrons in the superlattices. All the superlattices with different orientations exhibit exchange bias phenomenon. The field cooling and zero field cooling curves indicate that there are two different magnetic components in the superlattice in a low temperature range. Further analysis of the values of exchange field reveals that the exchange bias field is related to the orientation and polarity of the superlattices. Different superlattices form different charged planes stacked along out-of-plane orientation, leading to a polarity match/mismatch at the interface between the superlattices and substrates. The surface reconstructions that act as compensating for the polar mismatch influence the exchange bias field of the superlattices. It is observed that the intensities of the exchange field of the polar-matched superlattices are higher than those of the polar-mismatched superlattices at different temperatures. These results are helpful in further understanding the magnetoelectric transport properties in the perovskite superlattices.
      通信作者: 魏浩铭, weihm@qfnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11904198, 51902179, 51872161)资助的课题.
      Corresponding author: Wei Hao-Ming, weihm@qfnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11904198, 51902179, 51872161).
    [1]

    Wei H M, Yang C, Wu Y Q, Cao B Q, Lorenz M, Grundmann M 2020 J. Mater. Chem. C 8 15575Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Pena M A, Fierro J L 2001 Chem. Rev. 101 1981Google Scholar

    [4]

    Cherniukh I, Raino G, Stoferle T, et al. 2021 Nature 593 535Google Scholar

    [5]

    Noguchi Y, Matsuo H 2021 Nanomaterials 11 1857Google Scholar

    [6]

    Liu Y, Siron M, Lu D, Yang J J, dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q, Lei T, Kang J, Jin J B, Ciston J, Yang P D 2019 J. Am. Chem. Soc. 141 13028Google Scholar

    [7]

    Haislmaier R C, Lapano J, Yuan Y K, Stone G, Dong Y Q, Zhou H, Alem N, Engel-Herbert R 2018 APL Mater. 6 111104Google Scholar

    [8]

    Brahlek M, Sen Gupta A, Lapano J, Roth J, Zhang H T, Zhang L, Haislmaier R, Engel-Herbert R 2018 Adv. Funct. Mater. 28 1702772Google Scholar

    [9]

    Wei H M, Jenderka M, Bonholzer M, Grundmann M, Lorenz M 2015 Appl. Phys. Lett. 106 042103Google Scholar

    [10]

    周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 物理学报 67 157505Google Scholar

    Zhou L, Wang X, Zhang H M, Shen X D, Dong S, Long Y W 2018 Acta Phys. Sin. 67 157505Google Scholar

    [11]

    Yamasaki Y, Okuyama D, Nakamura M, et al. 2011 J. Phys. Soc. Jpn. 80 073601Google Scholar

    [12]

    张鹏, 朴红光, 张英德, 黄焦宏 2021 物理学报 70 157501Google Scholar

    Zhang P, Piao H G, Zhang Y D, Huang J H 2021 Acta Phys. Sin. 70 157501Google Scholar

    [13]

    Ouellette D G, Lee S B, Son J, Stemmer S, Balents L, Millis A J, Allen S J 2010 Phys. Rev. B 82 165112Google Scholar

    [14]

    Gibert M, Zubko P, Scherwitzl T, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 87 195116Google Scholar

    [16]

    Piamonteze C, Gibert M, Heidler J, et al. 2015 Phys. Rev. B 92 014426Google Scholar

    [17]

    Lee A T, Han M J 2013 Phys. Rev. B 88 035126Google Scholar

    [18]

    Wei H M, Barzola-Quiquia J L, Yang C, et al. 2017 Appl. Phys. Lett. 110 102403Google Scholar

    [19]

    Zang J L, Zhou G W, Bai Y H, Quan Z Y, Xu X H 2017 Sci. Rep. 7 10557Google Scholar

    [20]

    Pan S Y, Shi L, Zhao J Y, Zhou S M, Xu X M 2018 Appl. Phys. Lett. 112 141602Google Scholar

    [21]

    Kitamura M, Kobayashi M, Sakai E, et al. 2019 Phys. Rev. B 100 245132Google Scholar

    [22]

    Zhang J, Zhou J T, Luo Z L, Chen Y B, Zhou J, Lin W W, Lu M Hm Zhang S T, Gao C, Wu D, Chen Y F 2020 Phys. Rev. B 101 014422Google Scholar

    [23]

    Tanguturi R G, Zhou P, Yan Z, Qi Y J, Zhang T J 2021 Phys. Status Solidi B 258 2000527Google Scholar

    [24]

    Brenig W 1973 Philos. Mag. 27 1093Google Scholar

    [25]

    Khan Z H, Husain M, Perng T P, Salh N, Habib S 2008 J. Phys. Condens. Matter 20 475207Google Scholar

    [26]

    Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W, Bhattacharya A 2013 Phys. Rev. B 88 144411Google Scholar

    [27]

    Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102Google Scholar

    [28]

    Wei H M, Grundmann M, Lorenz M 2016 Appl. Phys. Lett. 109 082108Google Scholar

    [29]

    Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Feeland J W, Chakhalian J 2010 Appl. Phys. Lett. 96 133111Google Scholar

    [30]

    Chakraverty S, Saito M, Tsukimoto S, Ikuhara Y, Ohtomo A, Kawasaki M 2011 Appl. Phys. Lett. 99 223101Google Scholar

    [31]

    Middey S, Meyers D, Kareev M, Moon E J, Gray B A, Liu X, Freeland J W, Chakhalian J 2012 Appl. Phys. Lett. 101 261602Google Scholar

  • 图 1  (a) 生长在STO (110) 衬底上的LMO/LNO超晶格AFM图; (b) 超晶格表面线扫描图

    Fig. 1.  (a) AFM image of LMO/LNO superlattice on STO (110) substrate; (b) line-scan of superlattice.

    图 2  (110) 取向的超晶格在(a) (110) 对称峰 和 (b) (321) 非对称峰附近的倒易空间图

    Fig. 2.  Reciprocal space maps of (110)-oriented superlattice around the (a) symmetric (110) and (b) asymmetric (321) reflexes.

    图 3  (a) (110) 取向超晶格的变温电阻率曲线; (b) 方块电导率与温度的函数关系式, 其中虚线是线性拟合

    Fig. 3.  (a) Temperature dependence of the sheet resistance of (110)-oriented superlattice; (b) logarithm of sheet conductance ln (σ) as a function of T –1/3, where the red line is linear fitting.

    图 4  不同温度下 (110) 取向超晶格的磁滞回线(1 emu = 10–3 A·m2), 被测样品在1 T磁场下冷却

    Fig. 4.  Hysteresis loops for the (110)-oriented superlattice at different constant temperatures after cooling the sample with a field of 1 T.

    图 5  场冷和零场冷下 (110) 取向超晶格的变温磁矩曲线, 插图是50 K以下的局部放大图

    Fig. 5.  Magnetic moment versus temperature of (110)-oriented superlattice in the ZFC and FC states. The inset is the zoom-in below 50 K.

    图 6  不同取向超晶格交换场强对比图

    Fig. 6.  Comparison of exchange bias field of superlattices with different orientations.

    图 7  不同取向超晶格和衬底的结构和极化示意图

    Fig. 7.  Schematics of structure and polarity along different directions for superlattices and substrates.

  • [1]

    Wei H M, Yang C, Wu Y Q, Cao B Q, Lorenz M, Grundmann M 2020 J. Mater. Chem. C 8 15575Google Scholar

    [2]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [3]

    Pena M A, Fierro J L 2001 Chem. Rev. 101 1981Google Scholar

    [4]

    Cherniukh I, Raino G, Stoferle T, et al. 2021 Nature 593 535Google Scholar

    [5]

    Noguchi Y, Matsuo H 2021 Nanomaterials 11 1857Google Scholar

    [6]

    Liu Y, Siron M, Lu D, Yang J J, dos Reis R, Cui F, Gao M Y, Lai M L, Lin J, Kong Q, Lei T, Kang J, Jin J B, Ciston J, Yang P D 2019 J. Am. Chem. Soc. 141 13028Google Scholar

    [7]

    Haislmaier R C, Lapano J, Yuan Y K, Stone G, Dong Y Q, Zhou H, Alem N, Engel-Herbert R 2018 APL Mater. 6 111104Google Scholar

    [8]

    Brahlek M, Sen Gupta A, Lapano J, Roth J, Zhang H T, Zhang L, Haislmaier R, Engel-Herbert R 2018 Adv. Funct. Mater. 28 1702772Google Scholar

    [9]

    Wei H M, Jenderka M, Bonholzer M, Grundmann M, Lorenz M 2015 Appl. Phys. Lett. 106 042103Google Scholar

    [10]

    周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文 2018 物理学报 67 157505Google Scholar

    Zhou L, Wang X, Zhang H M, Shen X D, Dong S, Long Y W 2018 Acta Phys. Sin. 67 157505Google Scholar

    [11]

    Yamasaki Y, Okuyama D, Nakamura M, et al. 2011 J. Phys. Soc. Jpn. 80 073601Google Scholar

    [12]

    张鹏, 朴红光, 张英德, 黄焦宏 2021 物理学报 70 157501Google Scholar

    Zhang P, Piao H G, Zhang Y D, Huang J H 2021 Acta Phys. Sin. 70 157501Google Scholar

    [13]

    Ouellette D G, Lee S B, Son J, Stemmer S, Balents L, Millis A J, Allen S J 2010 Phys. Rev. B 82 165112Google Scholar

    [14]

    Gibert M, Zubko P, Scherwitzl T, Iniguez J, Triscone J M 2012 Nat. Mater. 11 195Google Scholar

    [15]

    Dong S, Dagotto E 2013 Phys. Rev. B 87 195116Google Scholar

    [16]

    Piamonteze C, Gibert M, Heidler J, et al. 2015 Phys. Rev. B 92 014426Google Scholar

    [17]

    Lee A T, Han M J 2013 Phys. Rev. B 88 035126Google Scholar

    [18]

    Wei H M, Barzola-Quiquia J L, Yang C, et al. 2017 Appl. Phys. Lett. 110 102403Google Scholar

    [19]

    Zang J L, Zhou G W, Bai Y H, Quan Z Y, Xu X H 2017 Sci. Rep. 7 10557Google Scholar

    [20]

    Pan S Y, Shi L, Zhao J Y, Zhou S M, Xu X M 2018 Appl. Phys. Lett. 112 141602Google Scholar

    [21]

    Kitamura M, Kobayashi M, Sakai E, et al. 2019 Phys. Rev. B 100 245132Google Scholar

    [22]

    Zhang J, Zhou J T, Luo Z L, Chen Y B, Zhou J, Lin W W, Lu M Hm Zhang S T, Gao C, Wu D, Chen Y F 2020 Phys. Rev. B 101 014422Google Scholar

    [23]

    Tanguturi R G, Zhou P, Yan Z, Qi Y J, Zhang T J 2021 Phys. Status Solidi B 258 2000527Google Scholar

    [24]

    Brenig W 1973 Philos. Mag. 27 1093Google Scholar

    [25]

    Khan Z H, Husain M, Perng T P, Salh N, Habib S 2008 J. Phys. Condens. Matter 20 475207Google Scholar

    [26]

    Hoffman J, Tung I C, Nelson-Cheeseman B B, Liu M, Freeland J W, Bhattacharya A 2013 Phys. Rev. B 88 144411Google Scholar

    [27]

    Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, Shimakawa Y 2009 Appl. Phys. Lett. 94 082102Google Scholar

    [28]

    Wei H M, Grundmann M, Lorenz M 2016 Appl. Phys. Lett. 109 082108Google Scholar

    [29]

    Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Feeland J W, Chakhalian J 2010 Appl. Phys. Lett. 96 133111Google Scholar

    [30]

    Chakraverty S, Saito M, Tsukimoto S, Ikuhara Y, Ohtomo A, Kawasaki M 2011 Appl. Phys. Lett. 99 223101Google Scholar

    [31]

    Middey S, Meyers D, Kareev M, Moon E J, Gray B A, Liu X, Freeland J W, Chakhalian J 2012 Appl. Phys. Lett. 101 261602Google Scholar

  • [1] 王继光, 李珑玲, 邱嘉图, 陈许敏, 曹东兴. 钙钛矿超晶格材料界面二维电子气的调控. 物理学报, 2023, 72(17): 176801. doi: 10.7498/aps.72.20230573
    [2] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [4] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [5] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [6] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应. 物理学报, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [7] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置. 物理学报, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [8] 乌晓燕, 孔明, 李戈扬, 赵文济. Si3N4在h-AlN上的晶体化与AlN/Si3N4纳米多层膜的超硬效应. 物理学报, 2009, 58(4): 2654-2659. doi: 10.7498/aps.58.2654
    [9] 喻利花, 董师润, 许俊华, 李戈扬. TaN/TiN和NbN/TiN纳米结构多层膜超硬效应及超硬机理研究. 物理学报, 2008, 57(11): 7063-7068. doi: 10.7498/aps.57.7063
    [10] 宋禹忻, 俞重远, 刘玉敏. 沉积速率和生长停顿对InAs/GaAs量子点超晶格生长影响的综合分析. 物理学报, 2008, 57(4): 2399-2403. doi: 10.7498/aps.57.2399
    [11] 赵文济, 董云杉, 岳建岭, 李戈扬. Si3N4的晶体化和ZrN/Si3N4纳米多层膜的超硬效应. 物理学报, 2007, 56(1): 459-464. doi: 10.7498/aps.56.459
    [12] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [13] 李志华, 王文新, 刘林生, 蒋中伟, 高汉超, 周均铭. As保护下的生长中断时间对AlSb/InAs超晶格界面粗糙度的影响. 物理学报, 2007, 56(3): 1785-1789. doi: 10.7498/aps.56.1785
    [14] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [15] 刘 艳, 董云杉, 岳建岭, 李戈扬. 反应磁控溅射ZrN/AlON纳米多层膜的晶体生长和超硬效应. 物理学报, 2006, 55(11): 6013-6019. doi: 10.7498/aps.55.6013
    [16] 孔 明, 魏 仑, 董云杉, 李戈扬. TiN/Al2O3纳米多层膜的共格外延生长及超硬效应. 物理学报, 2006, 55(2): 770-775. doi: 10.7498/aps.55.770
    [17] 魏 仑, 梅芳华, 邵 楠, 李戈扬, 李建国. TiN/SiO2纳米多层膜的晶体生长与超硬效应. 物理学报, 2005, 54(4): 1742-1748. doi: 10.7498/aps.54.1742
    [18] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [19] 叶健松, 胡晓君. 超薄膜外延生长的Monte Carlo模拟. 物理学报, 2002, 51(5): 1108-1112. doi: 10.7498/aps.51.1108
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  2916
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-03-29
  • 上网日期:  2022-07-21
  • 刊出日期:  2022-08-05

/

返回文章
返回