搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性纤维状超级电容器的研究进展

张鑫 陈星 白天 游兴艳 赵鑫 刘向阳 叶美丹

引用本文:
Citation:

柔性纤维状超级电容器的研究进展

张鑫, 陈星, 白天, 游兴艳, 赵鑫, 刘向阳, 叶美丹

Recent advances in flexible fiber-shaped supercapacitors

Zhang Xin, Chen Xing, Bai Tian, You Xing-Yan, Zhao Xin, Liu Xiang-Yang, Ye Mei-Dan
PDF
HTML
导出引用
  • 随着柔性电子产品的不断发展, 纤维状超级电容器(fiber-shaped supercapacitors, FSCs)凭借其重量轻、体积可控、弯曲拉伸性能好、可编织等优点引起了广泛关注. FSCs凭借着独特的一维纤维结构, 可以与其他各类用电器件和发电器件等复合成多功能集成柔性电子器件, 在可穿戴电子织物领域有着巨大的应用前景, 被人们寄予了厚望. 本文叙述了FSCs的最新进展, 首先介绍了不同的纤维基底并分析了各自的优缺点; 接着, 总结了用于FSCs的碳材料、金属氧化物、金属硫化物、导电聚合物和混合纳米复合材料等电极材料, 通过分析不同电极材料之间的区别和特性, 表明不同的电极材料适用于不同用途的FSCs; 然后, 总结了FSCs在与其他元器件复合形成集成器件方面的应用, 包括与一般用电器件、传感器、其他光电转化等发电器件集合成复合器件并应用到实际场景; 最后, 通过总结近年来FSCs研究所取得的成果, 概述该领域当前面临的挑战, 针对性地提出了目前FSCs发展的瓶颈和问题, 并提出了对未来发展方向的设想和建议.
    With the continuous development of today's flexible electronic products, fiber-shaped supercapacitors (fiber-shaped supercapacitors, FSCs) have attracted continuous attention. That’s due to their advantages such as light weight, controllable volume, good bending and tensile properties, and weavable. Fiber-shaped supercapacitors, with their unique one-dimensional fiber structure, can be combined with various other electrical or power generation devices into multifunctional integrated fiber-shaped electronic devices, which have huge application prospects in the field of wearable electronic textiles. This article describes the latest developments in fiber-shaped supercapacitor devices. Firstly, different fiber substrates are introduced and their advantages and disadvantages are analyzed as well. It also summarizes the electrode materials such as carbon materials, metal oxides and sulfides, conductive polymers, and hybrid nanocomposites of fiber-shaped supercapacitors. By analyzing the differences and characteristics of different electrode materials, it is shown that different electrode materials are suitable for different uses in fiber-shaped supercapacitors. Then we also summarize the application of fiber-shaped supercapacitors in cooperation with other devices to form integrated devices, including integration with general power devices, sensors, other photoelectric conversion devices and other power generation devices into hybrid devices and applied to practice. Finally, by summarizing the recent development results of fiber-shaped supercapacitors and the current challenges in the field, some current bottlenecks and problems of fiber-shaped supercapacitors are proposed, and some suggestions and ideas for the future development direction are put forward.
      通信作者: 叶美丹, mdye@xmu.edu.cn
    • 基金项目: 福建省自然科学基金面上项目(批准号: 2017J01026)和厦门大学校长基金(批准号: 20720180012)资助的课题
      Corresponding author: Ye Mei-Dan, mdye@xmu.edu.cn
    • Funds: the Natural Science Foundation of Fujian Province of China (Grant No. 2017J01026) and the Fundamental Research Funds for the Central Universities of China (Grant No. 20720180012)
    [1]

    Zhang Y, Shuai Y, Lou G, Shen Y, Hao C, Shen Z, Zhao S, Zhang J, Chai S, Zou Q 2017 J. Mater. Sci. 52 11201Google Scholar

    [2]

    Li Y, Xiao H, Yi T, He Y, Li X 2018 J. Energy Chem. 31 54

    [3]

    Liu W, Song M S, Kong B, Cui Y 2016 Adv. Mater. 29 1603436

    [4]

    Heo J S, Eom J, Kim Y H, Park S K 2018 Small 14 1703034Google Scholar

    [5]

    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G 2014 Adv. Mater 26 4763Google Scholar

    [6]

    Yao B, Zhang J, Kou T, Song Y, Li Y 2017 Adv. Sci. 4 1700107Google Scholar

    [7]

    Cai J, Chao L, Watanabe A 2016 Nano Energy 30 790Google Scholar

    [8]

    El-Kady M F, Kaner R B 2013 Nat. Commun. 4 1475Google Scholar

    [9]

    Wu M F, Yeh S J, Chen C T, Murayama H, Tsuboi T, Li W S, Chao I, Liu S W, Wang J K 2007 Adv. Funct. Mater. 17 1887Google Scholar

    [10]

    Wu H, Lou Z, Yang H, Shen G 2015 Nanoscale 7 1921Google Scholar

    [11]

    Wu Z S, Parvez K, Feng X, Müllen K 2013 Nat. Commun. 4 2487Google Scholar

    [12]

    Xu J, Wang Q, Wang X, Xiang Q, Shen G 2013 Acs Nano 7 5453Google Scholar

    [13]

    Wu Y H, Zhen R M, Liu H Z, Liu S Q, Deng Z F, Wang P P, Chen S, Liu L 2017 J. Mater. Chem. C 5 12483

    [14]

    Jung S, Kim J H, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D H 2014 Adv. Mater. 26 4825Google Scholar

    [15]

    Wang Z, Cheng J, Guan Q, Huang H, Li Y, Zhou J, Ni W, Wang B, He S, Peng H 2018 Nano Energy 45 210Google Scholar

    [16]

    Zhang S W, Yin B S, Liu C, Wang Z B, Gu D M 2017 J. Mater. Chem. A 5 15144Google Scholar

    [17]

    Meng F, Zheng L, Luo S, Li D, Wang G, Jin H, Li Q, Zhang Y, Liao K, Cantwell W J 2017 J. Mater. Chem. A 5 4397Google Scholar

    [18]

    Zhao J, Li H, Li C, et al. 2018 Nano Energy 45 420Google Scholar

    [19]

    Theerthagiri J, Karuppasamy K, Durai G, et al. 2018 Nanomaterials 8 256Google Scholar

    [20]

    Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D 2017 J. Mater. Chem. A 5 12653Google Scholar

    [21]

    Ke Q, Wang J 2016 J. Mater. 2 37Google Scholar

    [22]

    Chuang C M, Huang C W, Teng H S, Ting J M 2012 Compos. Sci. Technol. 72 1524Google Scholar

    [23]

    Li Q, Wang Z L, Li G R, Guo R, Ding L X, Tong Y X 2012 Nano Lett. 12 3803Google Scholar

    [24]

    Huang K J, Wang L, Liu Y J, Wang H B, Liu Y M, Wang L L 2013 Electrochimica Acta 109 587Google Scholar

    [25]

    Tang Y F, Chen T, Yu S X 2015 Chem. Commun. 51 9018Google Scholar

    [26]

    He Y B, Li G R, Wang Z L, Su C Y, Tong Y X 2011 Energ. Environ. Sci. 4 1288Google Scholar

    [27]

    Meher S K, Rao G R 2011 J. Phys. Chem. C 115 15646Google Scholar

    [28]

    Liu Q, Hong X D, Zhang X, Wang W, Guo W X, Liu X Y, Ye M D 2018 Chem. Eng. J. 356 985

    [29]

    Wu Z, Zhu Y, Ji X 2014 J. Mate. Chem. A 2 14759Google Scholar

    [30]

    Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H 2016 Adv. Mater. 28 3646Google Scholar

    [31]

    Chen T, Hao R, Peng H S, Dai L M 2015 Angew. Chem. Int Edit. 54 618

    [32]

    Huang Q, Wang D, Zheng Z 2016 Adv. Energy Mater. 6 1600783Google Scholar

    [33]

    Wang Q, Wang X, Jing X, Xia O, Hou X, Di C, Wang R, Shen G 2014 Nano Energy 8 44Google Scholar

    [34]

    Guo Z, Yang Z, Ding Y, Dong X, Long C, Cao J, Wang C, Xia Y, Peng H, Wang Y 2017 Chem 3 348Google Scholar

    [35]

    Wang X, Kai J, Shen G 2015 Mater. Today 18 265Google Scholar

    [36]

    Lin R, Zhu Z, Yu X, et al. 2017 J. Mater. Chem. A 5 814Google Scholar

    [37]

    Sun H, Xie S, Li Y, et al. 2016 Adv. Mater. 28 8431Google Scholar

    [38]

    Ai Y, Zheng L, Li L, Shuai C, Park H S, Wang Z M, Shen G 2016 Adv. Mater. Technol. 1 1600142Google Scholar

    [39]

    Kwon Y H, Woo S W, Jung H R, Yu H K, Kim K, Oh B H, Ahn S, Lee S Y, Song S W, Cho J 2012 Adv. Mater. 24 5145Google Scholar

    [40]

    Zhang Q, Wang X, Pan Z, et al. 2017 Nano Lett. 17 2719Google Scholar

    [41]

    Zhang Q, Sun J, Pan Z, et al. 2017 Nano Energy 39 219Google Scholar

    [42]

    Sun J, Zhang Q, Wang X, Zhao J, Guo J, Zhou Z, Zhang J, Man P, Sun J, Li Q, Yao Y 2017 J. Mater. Chem. A 5 21153Google Scholar

    [43]

    Cai S, Huang T, Chen H, Salman M, Gopalsamy K, Gao C 2017 J. Mater. Chem. A 5 22489Google Scholar

    [44]

    Ye H, Wang K, Zhou J, Song L, Gu L, Cao X 2018 J. Mater. Chem. A 6 1109Google Scholar

    [45]

    Guo K, Wang X, Hu L, Zhai T, Li H, Yu N 2018 ACS Appl. Mater. Inter. 10 19820Google Scholar

    [46]

    Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G 2018 Adv. Mater. 30 1800124Google Scholar

    [47]

    Hu M, Li Z, Li G, Hu T, Zhang C, Wang X 2017 Adv. Mater. Technol. 2 1700143Google Scholar

    [48]

    Liu W, Feng K, Zhang Y, Yu T, Han L, Lui G, Li M, Chiu G, Fung P, Yu A 2017 Nano Energy 34 491Google Scholar

    [49]

    Choi C, Sim H J, Spinks G M, Lepró X, Baughman R H, Kim S J 2016 Adv. Energy Mater. 6 1502119Google Scholar

    [50]

    Ma W, Chen S, Yang S, Zhu M 2016 RSC Adv. 6 50112Google Scholar

    [51]

    Zeng Y, Meng Y, Lai Z, Zhang X, Yu M, Fang P, Wu M, Tong Y, Lu X 2017 Adv. Mater. 29 1702698Google Scholar

    [52]

    Chen Q, Meng Y, Hu C, Yang Z, Qu L 2014 J. Power Sources 247 32Google Scholar

    [53]

    Ding X, Zhao Y, Hu C, Hu Y, Dong Z, Chen N, Zhang Z, Qu L 2014 J. Mater. Chem. A 2 12355Google Scholar

    [54]

    Zhao Y, Ding Y, Li Y, Peng L, Byon H R, Goodenough J B, Yu G 2015 Chem. Soc. Rev. 44 7968Google Scholar

    [55]

    Wang Y, Shi Y, Pan L, Ding Y, Zhao Y, Li Y, Shi Y, Yu G 2015 Nano Lett. 15 7736Google Scholar

    [56]

    Shi Y, Yu G 2016 Chem. Mater. 28 2466Google Scholar

    [57]

    Shi Y, Ha H, Al-Sudani A, Ellison C J, Yu G 2016 Adv. Mater. 28 7921Google Scholar

    [58]

    Pramanick B, Cadenas L B, Kim D M, et al. 2016 Carbon 107 872Google Scholar

    [59]

    Di J T, Zhang X H, Yong Z Z, Zhang Y Y, Li D, Li R, Li Q W 2016 Adv. Mater. 28 10529Google Scholar

    [60]

    IzadiNajafabadi A, Yasuda S, Kobashi K, et al. 2010 Adv. Mater. 22 E235Google Scholar

    [61]

    Zou M, Zhao W, Wu H, Zhang H, Xu W, Yang L, Wu S, Wang Y, Chen Y, Xu L, Cao A 2018 Adv. Mater. 30 1704419Google Scholar

    [62]

    Zheng X, Zhang K, Yao L, Qiu Y, Wang S 2018 J. Mater. Chem. A 6 896Google Scholar

    [63]

    Bae J, Song M K, Park Y J, Kim J M, Liu M, Wang Z L 2011 Angew. Chem. Int. Ed. Engl. 50 1683Google Scholar

    [64]

    Yue L, Jia D, Tang J, Zhang A, Liu F, Chen T, Barrow C, Yang W, Liu J 2020 J. Colloid Interf. Sci. 560 237Google Scholar

    [65]

    Tian J H, Lin B P, Sun Y, Zhang X Q, Yang H 2017 Mater. Letter. 206 91Google Scholar

    [66]

    Yin Z C, Bu Y Y, Ren J, Chen S, Zhao D M, Zou Y H, Shen S H, Yang D J 2018 Chem. Eng. J. 345 165Google Scholar

    [67]

    Pal B, Vijayan B L, Krishnan S G, Harilal M, Basirun W J, Lowe A, Yusoff M M, Jose R 2018 J. Alloy. Compd. 740 703Google Scholar

    [68]

    Wu X, Yao S 2017 Nano Energy 42 143Google Scholar

    [69]

    Zhang Q, Xu W, Sun J, et al. 2017 Nano Lett. 17 7552Google Scholar

    [70]

    Rahman M, Davey K, Qiao S Z 2017 Adv. Funct. Mater. 27 1606129Google Scholar

    [71]

    Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z 2016 Adv. Funct. Mater. 26 3314Google Scholar

    [72]

    Shen L F, Yu L, Wu H B, Yu X Y, Zhang X G, Lou X W 2015 Nat. Commun. 6 6694Google Scholar

    [73]

    Zhang P, Guan B Y, Yu L, Lou X W 2017 Angew. Chem. Int. Edit. 56 7141Google Scholar

    [74]

    Liu Y, Wang Z B, Zhong Y J, Tade M, Zhou W, Shao Z P 2017 Adv. Funct. Mater. 27 10Google Scholar

    [75]

    Sivanantham A, Ganesan P, Shanmugam S 2016 Adv. Funct. Mater. 26 4661Google Scholar

    [76]

    Yu X Y, Yu L, Shen L F, Song X H, Chen H Y, Lou X W 2014 Adv. Funct. Mater. 24 7440Google Scholar

    [77]

    Wang X, Zhang Q, Sun J, Zhou Z, Li Q, He B, Zhao J, Lu W, Wong C, Yao Y 2018 J Mater. Chem. A 6 8030Google Scholar

    [78]

    Snook G A, Kao P, Best A S 2011 J. Power Sources 196 1Google Scholar

    [79]

    Zhang Q F, Uchaker E, Candelaria S L, Cao G Z 2013 Chem. Soc. Rev. 42 3127Google Scholar

    [80]

    Candelaria S L, Shao Y Y, Zhou W, Li X L, Xiao J, Zhang J G, Wang Y, Liu J, Li J H, Cao G Z 2012 Nano Energy 1 195Google Scholar

    [81]

    Wang G P, Zhang L, Zhang J J 2012 Chem. Soc. Rev. 41 797Google Scholar

    [82]

    Liu S, Sun S H, You X Z 2014 Nanoscale 6 2037Google Scholar

    [83]

    Yang S, Sun L, An X, Qian X 2020 Carbohyd. Polym. 229 115455Google Scholar

    [84]

    Nagaraju G, Sekhar S C, Yu J S 2018 Adv. Energy Mater. 8 1702201Google Scholar

    [85]

    Le T S, Truong T K, Huynh V N, Bae J, Suh D 2020 Nano Energy 67 104198Google Scholar

    [86]

    Liu S, Gao D, Li J, Hui K S, Yin Y, Hui K N, Chan Jun S 2019 J. Mater. Chem. A 7 26618Google Scholar

    [87]

    Zhai T, Wan L M, Sun S, Chen Q, Sun J, Xia Q Y, Xia H 2017 Adv. Mater. 29 1604167Google Scholar

    [88]

    Liu S, Xu C, Yang H, Qian G, Hua S, Liu J, Zheng X, Lu X 2020 Small e1905778

    [89]

    Li X, Liu D, Yin X, Zhang C, Cheng P, Guo H, Song W, Wang J 2019 J. Power Sources 440 227143Google Scholar

    [90]

    Wang X, Liu B, Liu R, Wang Q, Hou X, Chen D, Wang R, Shen G 2014 Angew. Chem. Int. Ed. Engl. 53 1849Google Scholar

    [91]

    Guo W X, Xue X Y, Wang S H, Lin C J, Wang Z L 2012 Nano Lett. 12 2520Google Scholar

    [92]

    Hsu C Y, Chen H W, Lee K M, Hu C W, Ho K C 2010 J. Power Sources 195 6232Google Scholar

    [93]

    Chen T, Qiu L, Yang Z, Cai Z, Ren J, Li H, Lin H, Sun X, Peng H 2012 Angew. Chem. Int. Ed. Engl. 51 11977Google Scholar

  • 图 1  近10年来SCs文章数量

    Fig. 1.  Numbers of articles on supercapacitors in the past decade.

    图 2  SCs储能工作机理示意图

    Fig. 2.  Schematic diagrams of the working mechanism of supercapacitors.

    图 3  SCs类型分类示意图

    Fig. 3.  Schematic diagrams of different types of supercapacitors.

    图 4  (a) CVD工艺的示意图, 其中在碳纤维基板上生长了多孔CNT海绵层; (b) 单一的碳纤维和在CVD之后生长的直径为7.2 mm的CNT@碳纤维的照片; (c) 三种直径分别为0.51, 1.20和3.64 mm的CNT@碳纤维的照片; (d) CNT@碳纤维的圆形横截面和留在横截面或纤维表面的水滴的照片; (e) 乙醇渗透和蒸发后, CNT@碳纤维收缩的照片, 以及打结的收缩纤维[61]

    Fig. 4.  (a) Schematic diagram of the CVD process in CNT fiber: (b) photographs of a single CF before CVD and CNTs@CF fiber after CVD with diameter of 7.2 mm; (c) photographs of CNTs@CF fibers with diameters of 0.51, 1.20, and 3.64 mm; (d) photos of the cross sectional view and water droplets on cross section and surface of CNTs @CF fiber; (e) photos of a CNTs@CF fiber shrinking after ethanol infiltration and evaporation, and a knotted shrunk fiber[61].

    图 5  (a) 制备SG-CPF@GF电极和组装的FSCs示意图[62]; (b) FSCs示意图; (c) 塑料线上纳米线阵列的扫描电子显微镜(SEM)图像[63]

    Fig. 5.  (a) Schematic diagrams of the fabricating process for SG-CPF@GF electrodes and FSCs[62]; (b) schematic of the fiber-based supercapacitor; (c) SEM image of the NWs in a plastic wire[63].

    图 6  (a) OCNTF的制造过程示意图; (b) 原始CNTF的SEM图像; (c) OCNTF的SEM图像; (d) PEDOT:PSS@OCNTF的SEM图像; (e) FASC的制备示意图; (f) 伸缩式FASC的结构示意图; (g) 可拉伸FASC的横截面结构; (h) 将CNT纤维包裹在弹性纤维周围[41]

    Fig. 6.  (a) Schematic of the fabrication process of the OCNTF; (b) SEM images of pristine CNTF; (c) SEM images of OCNTF; (d) SEM image of PEDOT:PSS@OCNTF; (e) schematic of the fabrication process of the FASC; (f) the structure of the stretchable FASC; (g) schematic of the stretchable FASC; (h) wrapping the CNT fibers around an elastic fiber[41].

    图 7  (a) 在CNTF上制备ZNCO@Ni(OH)2NWA的示意图; (b), (c) ZNCO NWAs/CNTF在不同放大倍数下的SEM图像; (d) ZNCO@Ni(OH)2NWAs/CNTF的SEM图像; (e) CFASC的横截面结构; (f) 将VN@C NWA / CNTS包裹在ZNCO@Ni(OH)2NWAs/CNTF/KOH-PVA的周围; (g) 以25 mV/s的恒定扫描速率在不同的工作电压下测量的组装CFASC的循环伏安(CV)曲线; (h) 以9 mA/cm2的电流密度在0.4—1.6 V电压下的CFASC的恒电流充放电(GCD)曲线; (i) 根据在9 mA/cm2下获得的GCD曲线计算的面积比电容和能量密度[69]

    Fig. 7.  (a) Schematic of the ZNCO@Ni(OH)2NWAs on a CNTF; (b), (c) SEM images of ZNCO NWAs/CNTF at different magnifications; (d) SEM image of ZNCO@Ni(OH)2NWAs/CNTF; (e) cross-sectional structure of the CFASCs; (f) wrapping VN@C NWAs/CNTS to the ZNCO@Ni(OH)2NWAs/CNTF/KOH-PVA; (g) CV curves of CFASCs at a scan rate of 25 mV/s with different operating voltages; (h) GCD curves of the CFASCs at a current density of 9 mA/cm2 at voltages from 0.4 to 1.6 V; (i) areal specific capacitance and energy density calculated based on the GCD curves obtained at 9 mA/cm2[69].

    图 8  (a), (b) 在碳纳米管上不同放大倍数下的蒲公英样MNCO NWAs的SEM图像; (c) FASC器件制备过程的详细示意图[42]

    Fig. 8.  (a), (b) SEM images of dandelion-like MNCO NWAs on CNTF at different magnifications; (c) schematic of the fabrication process of FASC[42].

    图 9  (a)−(c) 在CNTF上生长的MNCS NTAs的不同放大倍数SEM图像; (d) 在CNTF上生长的MNCS三脚架结构纳米管阵列的示意图; (e) FASC设备的示意图; (f) 在30 mV/s的恒定扫描速率下, FASC器件在不同工作电压下的CV曲线; (g) 在2 mA/cm2的电流密度下, 在0.4—1.6 V的不同电压下收集的FASC装置的GCD曲线; (h) 根据2 mA/cm2下获得的充放电曲线计算出的比电容和能量密度[77]

    Fig. 9.  (a)−(c) SEM images of MNCS NTAs on CNTFs at different magnifications; (d) schematic of MNCS multi-tripod NTAs grown on CNTFs; (e) schematic of the FASC device; (f) CV curves of the FASC device at a scan rate of 30 mV/s with different operating voltages; (g) GCD curves of the FASC at a current density of 2 mA/cm2 from 0.4 to 1.6 V; (h) areal specific capacitance and energy density calculated based on GCD curves obtained at 2 mA/cm2[77].

    图 10  (a) PEDOT-S:PSS纤维经硫酸处理后的结构重排机理示意图; (b) 基于PEDOT-S: PSS制备组装串联FSCs (T-SFSS)的示意图; (c) T-SFSS点亮USB灯的照片, 插图是显示USB灯通过两根扭曲的PEDOT-S: PSS纤维与T-SFSS连接的照片; (d) 由三个串联的SFSS组成的T-SFSS的照片, 以五个发光二极管(LED)点亮标志缩写; (e), (f) 由三个相连的T-SFSS织成的织物供电的电子手表的照片, 每个都由三个基于PEDOT-S: PSS纤维串联的T-SFSS组成; (g) 由两个SFSS串联组成的T-SFSS的照片, 在0%—400%的应变增加的情况下点亮绿色LED[15]

    Fig. 10.  (a) Schematic of the structural re-arrangement mechanism of PEDOT-S:PSS fiber by the treatment of the sulfuric acid; (b) schematic of the fabrication of PEDOT-S:PSS based T-SFSSs in series; (c) photo of T-SFSSs to lighten up a commercial USB light, the inset photo showing the USB light connected with the T-SFSSs by two twisted PEDOT-S:PSS fibers; (d) photo of T-SFSS consisting of three SFSS in series, with five LEDs lighting up the logo abbreviation (LEDs); (e), (f) photos of a commercial digital watch powered by three connected T-SFSS woven into fabric, each consists of three tandem T-SFSS based on PEDOT-S: PSS fiber; (g) photos of T-SFSS, which includes two SFSS in series to light up the green LED when the strain increases from 0% to 400%[15].

    图 11  (a) 三元同轴纤维的制备过程和微观结构的示意图; (b)−(d) GCP@CMC的SEM图像; (e) GCP@CMC在电流密度为3.0 mA/cm2的情况下经过5000次循环后的循环稳定性; (f) 弯曲稳定性测试, 插图显示了不同的弯曲状态; (g) 与选择的FSCs的比较图; (h) 三个GCP@CMC串联组装FSCs弯曲的照片; (i) 由GCP@CMC串联组装的三个FSC点亮的LED[43]

    Fig. 11.  (a) Schematic of the fabrication process and microscopic structure of the ternary coaxial fibers; (b)−(d) SEM images of GCP@CMC; (e) cycling stability of GCP@CMC at 3.0 mA/cm2 after 5000 cycles; (f) bending stability test, illustration showing different bending states; (g) plots compared with selected fiber supercapacitor; (h) photograph of three bending FSCs assembled by GCP@CMC in series; (i) LED lit by three FSCs assembled GCP@CMC in series[43].

    图 12  (a) NPN电极中离子和电荷转移的示意图; (b)制备CMF的示意图; (c)−(e)低放大倍率和高放大倍率的CMF的SEM图像[16]

    Fig. 12.  (a) Schematic of ion and charge transfer in the NPN electrode; (b) schematic of the preparation of the CMF; (c)−(e) SEM images of the CMF at different magnifications[16].

    图 13  使用废电缆线制备森林状的NiO NSs@CNTs@CuO NWAs/Cu纤维过程的示意图[84]

    Fig. 13.  Schematic of the fabrication process of forest-like NiO NSs@CNTs@CuO NWAs/Cu fibers by waste cable wires[84].

    图 14  (a) CoS2系统; (b) P-CoS2系统; (c), (d) CoS2和 P-CoS2的局部电荷密度分布; (e), (f) CoS2和 P-CoS2的(100)平面中钴的位置的晶体结构的侧视图, 其中钴以蓝色显示, 硫为粉红色, 磷为绿色, 氧为红色, 氢为黄色[86]

    Fig. 14.  (a) CoS2 system; (b) P-CoS2 system; (c), (d) local charge density distributions of CoS2 and P-CoS2; (e), (f) CoS2 and Co-location of cobalt in (100) plane of P-CoS2. A side view of the crystalline structure of which cobalt is shown in blue, sulfur is pink, phosphorus is green, oxygen is red, and hydrogen is yellow[86].

    图 15  (a)−(c) FSCs在不断增加的弯曲角度下的图像; (d) NPCM-FSC漂浮在水上; (e)−(h) 红色LED被NPCM-FSC点亮的照片; (i), (j) 组装后的NPCM-FSC的应用; (k) 制备过程[16]

    Fig. 15.  (a)−(c) photographs of the fiber-shaped supercapacitors at increasing bending angles; (d) the NPCM-FSC floats on water; (e)−(h) photos of the red LED lighted by NPCM-FSC; (i), (j) the application of the as-assembled NPCM-FSC; (k) schematic of the fabrication process of FSC[16].

    图 16  (a) FSC器件制备过程的示意图; (b) FTENG的示意图; (c) FTENG的工作机理; (d) 自充电电源系统和负载的电路图; (e) FTENG为制备好的FSCs充电的充电/放电曲线[18]

    Fig. 16.  (a) Schematic of the fabrication process of the FSC device; (b) schematic diagram of the FTENG; (c) basic working mecha-nism of the FTENG; (d) circuit diagram of the self-charging power system and load; (e) charging/discharging curves of the as-prepared FSCs charged by the FTENG[18].

    图 17  (a) 基于纤维的非对称SCs的照片; (b) CV曲线; (c) GCD曲线; (d) 非对称SCs的体积电容随电势窗口的增加而增加的曲线; (e) 器件的示意图, 反映出由柔性非对称FSCs供电的光电探测器的电流响应; (f) 在不同的入射光强度下被照亮; (g) 在40 mW/cm2的光强度下处于不同的弯曲状态[90]

    Fig. 17.  (a) Photo of the fiber asymmetric supercapacitor; (b) CV curves; (c) GCD curves; (d) the volume capacitance increases with the potential window of the asymmetric supercapacitor; (e) schematic of the device, current response of a photodetector powered by a FASC; (f) illuminated at different incident light intensities; (g) different bending states under a light intensity of 40 mW/cm2[90].

    图 18  (a) 用于光电转换(PC)和能量存储(ES)的集成线形设备的示意图; (b), (c) 分别在低倍率和高倍率下通过电化学阳极氧化2 h在钛丝上生长的取向二氧化钛纳米管的SEM图像; (d), (e) 分别在低倍率和高倍率下的CNT纤维的SEM图像; (f) 工作机制示意图, CB = 导带, VB = 价带; (g) 在AM 1.5的光照下的典型电流密度/电压曲线; (h), (i) 分别在充电和放电过程中的电路连接示意图; (j) 纤维的充放电曲线, 放电电流为0.1 mA[93]

    Fig. 18.  (a) Schematic of integrated linear device for photoelectric conversion (PC) and energy storage (ES); (b), (c) SEM images of oriented titanium dioxide nanotubes grown on Ti wires by electrochemical anodization for 2 h at low and high magnifications, respectively; (d), (e) SEM images of CNT fibers at low and high magnifications, respectively; (f) schematic of working mechanism, CB = conduction band, VB = valence band; (g) typical current density/voltage curve under AM 1.5 light; (h), (i) schematic diagram of circuit connection during charging and discharging respectively; (j) typical energy wire light discharge curve. Discharge current is 0.1 mA[93].

    表 1  不同类型纤维基底的优缺点

    Table 1.  Advantages and disadvantages of different fiber substrates.

    基底优点缺点
    碳基纤维功率密度高、充放电速率快、循环寿命长延展性差、成本高、制备工艺复杂
    聚合物纤维延展性和拉伸性能优异电容低、循环性差
    金属纤维成本低廉、制备简单、机械强度高、电导率高柔韧性、拉伸性能较差
    水凝胶纤维良好的拉伸形变能力空气中易脱水、电容较低
    尼龙纤维等来源广泛易制备、部分纤维有拉伸性能电容和循环性较差
    下载: 导出CSV
  • [1]

    Zhang Y, Shuai Y, Lou G, Shen Y, Hao C, Shen Z, Zhao S, Zhang J, Chai S, Zou Q 2017 J. Mater. Sci. 52 11201Google Scholar

    [2]

    Li Y, Xiao H, Yi T, He Y, Li X 2018 J. Energy Chem. 31 54

    [3]

    Liu W, Song M S, Kong B, Cui Y 2016 Adv. Mater. 29 1603436

    [4]

    Heo J S, Eom J, Kim Y H, Park S K 2018 Small 14 1703034Google Scholar

    [5]

    Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G 2014 Adv. Mater 26 4763Google Scholar

    [6]

    Yao B, Zhang J, Kou T, Song Y, Li Y 2017 Adv. Sci. 4 1700107Google Scholar

    [7]

    Cai J, Chao L, Watanabe A 2016 Nano Energy 30 790Google Scholar

    [8]

    El-Kady M F, Kaner R B 2013 Nat. Commun. 4 1475Google Scholar

    [9]

    Wu M F, Yeh S J, Chen C T, Murayama H, Tsuboi T, Li W S, Chao I, Liu S W, Wang J K 2007 Adv. Funct. Mater. 17 1887Google Scholar

    [10]

    Wu H, Lou Z, Yang H, Shen G 2015 Nanoscale 7 1921Google Scholar

    [11]

    Wu Z S, Parvez K, Feng X, Müllen K 2013 Nat. Commun. 4 2487Google Scholar

    [12]

    Xu J, Wang Q, Wang X, Xiang Q, Shen G 2013 Acs Nano 7 5453Google Scholar

    [13]

    Wu Y H, Zhen R M, Liu H Z, Liu S Q, Deng Z F, Wang P P, Chen S, Liu L 2017 J. Mater. Chem. C 5 12483

    [14]

    Jung S, Kim J H, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D H 2014 Adv. Mater. 26 4825Google Scholar

    [15]

    Wang Z, Cheng J, Guan Q, Huang H, Li Y, Zhou J, Ni W, Wang B, He S, Peng H 2018 Nano Energy 45 210Google Scholar

    [16]

    Zhang S W, Yin B S, Liu C, Wang Z B, Gu D M 2017 J. Mater. Chem. A 5 15144Google Scholar

    [17]

    Meng F, Zheng L, Luo S, Li D, Wang G, Jin H, Li Q, Zhang Y, Liao K, Cantwell W J 2017 J. Mater. Chem. A 5 4397Google Scholar

    [18]

    Zhao J, Li H, Li C, et al. 2018 Nano Energy 45 420Google Scholar

    [19]

    Theerthagiri J, Karuppasamy K, Durai G, et al. 2018 Nanomaterials 8 256Google Scholar

    [20]

    Borenstein A, Hanna O, Ran A, Luski S, Brousse T, Aurbach D 2017 J. Mater. Chem. A 5 12653Google Scholar

    [21]

    Ke Q, Wang J 2016 J. Mater. 2 37Google Scholar

    [22]

    Chuang C M, Huang C W, Teng H S, Ting J M 2012 Compos. Sci. Technol. 72 1524Google Scholar

    [23]

    Li Q, Wang Z L, Li G R, Guo R, Ding L X, Tong Y X 2012 Nano Lett. 12 3803Google Scholar

    [24]

    Huang K J, Wang L, Liu Y J, Wang H B, Liu Y M, Wang L L 2013 Electrochimica Acta 109 587Google Scholar

    [25]

    Tang Y F, Chen T, Yu S X 2015 Chem. Commun. 51 9018Google Scholar

    [26]

    He Y B, Li G R, Wang Z L, Su C Y, Tong Y X 2011 Energ. Environ. Sci. 4 1288Google Scholar

    [27]

    Meher S K, Rao G R 2011 J. Phys. Chem. C 115 15646Google Scholar

    [28]

    Liu Q, Hong X D, Zhang X, Wang W, Guo W X, Liu X Y, Ye M D 2018 Chem. Eng. J. 356 985

    [29]

    Wu Z, Zhu Y, Ji X 2014 J. Mate. Chem. A 2 14759Google Scholar

    [30]

    Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H 2016 Adv. Mater. 28 3646Google Scholar

    [31]

    Chen T, Hao R, Peng H S, Dai L M 2015 Angew. Chem. Int Edit. 54 618

    [32]

    Huang Q, Wang D, Zheng Z 2016 Adv. Energy Mater. 6 1600783Google Scholar

    [33]

    Wang Q, Wang X, Jing X, Xia O, Hou X, Di C, Wang R, Shen G 2014 Nano Energy 8 44Google Scholar

    [34]

    Guo Z, Yang Z, Ding Y, Dong X, Long C, Cao J, Wang C, Xia Y, Peng H, Wang Y 2017 Chem 3 348Google Scholar

    [35]

    Wang X, Kai J, Shen G 2015 Mater. Today 18 265Google Scholar

    [36]

    Lin R, Zhu Z, Yu X, et al. 2017 J. Mater. Chem. A 5 814Google Scholar

    [37]

    Sun H, Xie S, Li Y, et al. 2016 Adv. Mater. 28 8431Google Scholar

    [38]

    Ai Y, Zheng L, Li L, Shuai C, Park H S, Wang Z M, Shen G 2016 Adv. Mater. Technol. 1 1600142Google Scholar

    [39]

    Kwon Y H, Woo S W, Jung H R, Yu H K, Kim K, Oh B H, Ahn S, Lee S Y, Song S W, Cho J 2012 Adv. Mater. 24 5145Google Scholar

    [40]

    Zhang Q, Wang X, Pan Z, et al. 2017 Nano Lett. 17 2719Google Scholar

    [41]

    Zhang Q, Sun J, Pan Z, et al. 2017 Nano Energy 39 219Google Scholar

    [42]

    Sun J, Zhang Q, Wang X, Zhao J, Guo J, Zhou Z, Zhang J, Man P, Sun J, Li Q, Yao Y 2017 J. Mater. Chem. A 5 21153Google Scholar

    [43]

    Cai S, Huang T, Chen H, Salman M, Gopalsamy K, Gao C 2017 J. Mater. Chem. A 5 22489Google Scholar

    [44]

    Ye H, Wang K, Zhou J, Song L, Gu L, Cao X 2018 J. Mater. Chem. A 6 1109Google Scholar

    [45]

    Guo K, Wang X, Hu L, Zhai T, Li H, Yu N 2018 ACS Appl. Mater. Inter. 10 19820Google Scholar

    [46]

    Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G 2018 Adv. Mater. 30 1800124Google Scholar

    [47]

    Hu M, Li Z, Li G, Hu T, Zhang C, Wang X 2017 Adv. Mater. Technol. 2 1700143Google Scholar

    [48]

    Liu W, Feng K, Zhang Y, Yu T, Han L, Lui G, Li M, Chiu G, Fung P, Yu A 2017 Nano Energy 34 491Google Scholar

    [49]

    Choi C, Sim H J, Spinks G M, Lepró X, Baughman R H, Kim S J 2016 Adv. Energy Mater. 6 1502119Google Scholar

    [50]

    Ma W, Chen S, Yang S, Zhu M 2016 RSC Adv. 6 50112Google Scholar

    [51]

    Zeng Y, Meng Y, Lai Z, Zhang X, Yu M, Fang P, Wu M, Tong Y, Lu X 2017 Adv. Mater. 29 1702698Google Scholar

    [52]

    Chen Q, Meng Y, Hu C, Yang Z, Qu L 2014 J. Power Sources 247 32Google Scholar

    [53]

    Ding X, Zhao Y, Hu C, Hu Y, Dong Z, Chen N, Zhang Z, Qu L 2014 J. Mater. Chem. A 2 12355Google Scholar

    [54]

    Zhao Y, Ding Y, Li Y, Peng L, Byon H R, Goodenough J B, Yu G 2015 Chem. Soc. Rev. 44 7968Google Scholar

    [55]

    Wang Y, Shi Y, Pan L, Ding Y, Zhao Y, Li Y, Shi Y, Yu G 2015 Nano Lett. 15 7736Google Scholar

    [56]

    Shi Y, Yu G 2016 Chem. Mater. 28 2466Google Scholar

    [57]

    Shi Y, Ha H, Al-Sudani A, Ellison C J, Yu G 2016 Adv. Mater. 28 7921Google Scholar

    [58]

    Pramanick B, Cadenas L B, Kim D M, et al. 2016 Carbon 107 872Google Scholar

    [59]

    Di J T, Zhang X H, Yong Z Z, Zhang Y Y, Li D, Li R, Li Q W 2016 Adv. Mater. 28 10529Google Scholar

    [60]

    IzadiNajafabadi A, Yasuda S, Kobashi K, et al. 2010 Adv. Mater. 22 E235Google Scholar

    [61]

    Zou M, Zhao W, Wu H, Zhang H, Xu W, Yang L, Wu S, Wang Y, Chen Y, Xu L, Cao A 2018 Adv. Mater. 30 1704419Google Scholar

    [62]

    Zheng X, Zhang K, Yao L, Qiu Y, Wang S 2018 J. Mater. Chem. A 6 896Google Scholar

    [63]

    Bae J, Song M K, Park Y J, Kim J M, Liu M, Wang Z L 2011 Angew. Chem. Int. Ed. Engl. 50 1683Google Scholar

    [64]

    Yue L, Jia D, Tang J, Zhang A, Liu F, Chen T, Barrow C, Yang W, Liu J 2020 J. Colloid Interf. Sci. 560 237Google Scholar

    [65]

    Tian J H, Lin B P, Sun Y, Zhang X Q, Yang H 2017 Mater. Letter. 206 91Google Scholar

    [66]

    Yin Z C, Bu Y Y, Ren J, Chen S, Zhao D M, Zou Y H, Shen S H, Yang D J 2018 Chem. Eng. J. 345 165Google Scholar

    [67]

    Pal B, Vijayan B L, Krishnan S G, Harilal M, Basirun W J, Lowe A, Yusoff M M, Jose R 2018 J. Alloy. Compd. 740 703Google Scholar

    [68]

    Wu X, Yao S 2017 Nano Energy 42 143Google Scholar

    [69]

    Zhang Q, Xu W, Sun J, et al. 2017 Nano Lett. 17 7552Google Scholar

    [70]

    Rahman M, Davey K, Qiao S Z 2017 Adv. Funct. Mater. 27 1606129Google Scholar

    [71]

    Chen G F, Ma T Y, Liu Z Q, Li N, Su Y Z, Davey K, Qiao S Z 2016 Adv. Funct. Mater. 26 3314Google Scholar

    [72]

    Shen L F, Yu L, Wu H B, Yu X Y, Zhang X G, Lou X W 2015 Nat. Commun. 6 6694Google Scholar

    [73]

    Zhang P, Guan B Y, Yu L, Lou X W 2017 Angew. Chem. Int. Edit. 56 7141Google Scholar

    [74]

    Liu Y, Wang Z B, Zhong Y J, Tade M, Zhou W, Shao Z P 2017 Adv. Funct. Mater. 27 10Google Scholar

    [75]

    Sivanantham A, Ganesan P, Shanmugam S 2016 Adv. Funct. Mater. 26 4661Google Scholar

    [76]

    Yu X Y, Yu L, Shen L F, Song X H, Chen H Y, Lou X W 2014 Adv. Funct. Mater. 24 7440Google Scholar

    [77]

    Wang X, Zhang Q, Sun J, Zhou Z, Li Q, He B, Zhao J, Lu W, Wong C, Yao Y 2018 J Mater. Chem. A 6 8030Google Scholar

    [78]

    Snook G A, Kao P, Best A S 2011 J. Power Sources 196 1Google Scholar

    [79]

    Zhang Q F, Uchaker E, Candelaria S L, Cao G Z 2013 Chem. Soc. Rev. 42 3127Google Scholar

    [80]

    Candelaria S L, Shao Y Y, Zhou W, Li X L, Xiao J, Zhang J G, Wang Y, Liu J, Li J H, Cao G Z 2012 Nano Energy 1 195Google Scholar

    [81]

    Wang G P, Zhang L, Zhang J J 2012 Chem. Soc. Rev. 41 797Google Scholar

    [82]

    Liu S, Sun S H, You X Z 2014 Nanoscale 6 2037Google Scholar

    [83]

    Yang S, Sun L, An X, Qian X 2020 Carbohyd. Polym. 229 115455Google Scholar

    [84]

    Nagaraju G, Sekhar S C, Yu J S 2018 Adv. Energy Mater. 8 1702201Google Scholar

    [85]

    Le T S, Truong T K, Huynh V N, Bae J, Suh D 2020 Nano Energy 67 104198Google Scholar

    [86]

    Liu S, Gao D, Li J, Hui K S, Yin Y, Hui K N, Chan Jun S 2019 J. Mater. Chem. A 7 26618Google Scholar

    [87]

    Zhai T, Wan L M, Sun S, Chen Q, Sun J, Xia Q Y, Xia H 2017 Adv. Mater. 29 1604167Google Scholar

    [88]

    Liu S, Xu C, Yang H, Qian G, Hua S, Liu J, Zheng X, Lu X 2020 Small e1905778

    [89]

    Li X, Liu D, Yin X, Zhang C, Cheng P, Guo H, Song W, Wang J 2019 J. Power Sources 440 227143Google Scholar

    [90]

    Wang X, Liu B, Liu R, Wang Q, Hou X, Chen D, Wang R, Shen G 2014 Angew. Chem. Int. Ed. Engl. 53 1849Google Scholar

    [91]

    Guo W X, Xue X Y, Wang S H, Lin C J, Wang Z L 2012 Nano Lett. 12 2520Google Scholar

    [92]

    Hsu C Y, Chen H W, Lee K M, Hu C W, Ho K C 2010 J. Power Sources 195 6232Google Scholar

    [93]

    Chen T, Qiu L, Yang Z, Cai Z, Ren J, Li H, Lin H, Sun X, Peng H 2012 Angew. Chem. Int. Ed. Engl. 51 11977Google Scholar

  • [1] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用. 物理学报, 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] 张天富, 司洋洋, 黎意杰, 陈祖煌. 锆酸铅基反铁电薄膜研究现状与展望. 物理学报, 2023, 72(9): 097704. doi: 10.7498/aps.72.20230389
    [3] 王剑涛, 肖文波, 夏情感, 吴华明, 李璠, 黄乐. 背电极材料、结构以及厚度等影响钙钛矿太阳能电池性能的研究. 物理学报, 2021, 70(19): 198404. doi: 10.7498/aps.70.20211037
    [4] 叶安娜, 张晓华, 杨朝晖. 基于对苯二酚/碳纳米管阵列氧化还原增强固态超级电容器的研究. 物理学报, 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [5] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件. 物理学报, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [6] 巫梦丹, 周胜林, 叶安娜, 王敏, 张晓华, 杨朝晖. 基于中性水凝胶/取向碳纳米管阵列高电压柔性固态超级电容器. 物理学报, 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [7] 李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱. MoS2及其金属复合表面增强拉曼散射基底的发展及应用. 物理学报, 2019, 68(13): 134203. doi: 10.7498/aps.68.20182113
    [8] 周愈之. 过渡金属硫族化合物柔性基底体系的模型与应用. 物理学报, 2018, 67(21): 218102. doi: 10.7498/aps.67.20181571
    [9] 金晨东, 宋承昆, 王金帅, 王建波, 刘青芳. 磁斯格明子的微磁学研究进展和应用. 物理学报, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [10] 朱畦, 袁协涛, 诸翊豪, 张晓华, 杨朝晖. 基于收缩高密度碳纳米管阵列的柔性固态超级电容器. 物理学报, 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [11] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [12] 张诚, 邓明森, 蔡绍洪. 基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极. 物理学报, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [13] 陈程程, 刘立英, 王如志, 宋雪梅, 王波, 严辉. 不同基底的GaN纳米薄膜制备及其场发射增强研究. 物理学报, 2013, 62(17): 177701. doi: 10.7498/aps.62.177701
    [14] 刘建丰, 周庆莉, 施宇蕾, 李磊, 赵冬梅, 张存林. 基底对亚波长金属双环结构太赫兹透射性质的影响. 物理学报, 2012, 61(4): 048101. doi: 10.7498/aps.61.048101
    [15] 全军, 刘一星, 余亚斌. 相干平行板电容器对外场的动态响应. 物理学报, 2010, 59(2): 1237-1242. doi: 10.7498/aps.59.1237
    [16] 陈学锋, 李华梅, 李东杰, 曹 菲, 董显林. 脉冲电容器用细电滞回线铁电陶瓷材料的研究. 物理学报, 2008, 57(11): 7298-7304. doi: 10.7498/aps.57.7298
    [17] 姜本学, 徐 军, 李红军, 王静雅, 赵广军, 赵志伟. 温度梯度法生长Nd:YAG激光晶体的核心分布. 物理学报, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [18] 高国良, 钱昌吉, 李 洪, 谷温静, 黄晓虹, 叶高翔. 无格点基底表面的杂质分布对分枝状凝聚体的影响. 物理学报, 2006, 55(7): 3349-3354. doi: 10.7498/aps.55.3349
    [19] 高国良, 钱昌吉, 李 洪, 黄晓虹, 谷温静, 叶高翔. 含杂质无格点基底表面分枝状凝聚体的计算机模拟. 物理学报, 2005, 54(6): 2600-2605. doi: 10.7498/aps.54.2600
    [20] 张钟华. 变动边界微扰法及其对精密电容器误差计算的应用. 物理学报, 1979, 28(4): 563-570. doi: 10.7498/aps.28.563
计量
  • 文章访问数:  14529
  • PDF下载量:  561
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-24
  • 修回日期:  2020-02-13
  • 上网日期:  2020-04-08
  • 刊出日期:  2020-09-05

/

返回文章
返回