搜索

x
中国物理学会期刊

关於固体的现实应力空间(续)

CSTR: 32037.14.aps.10.171

ON THE REALISTIC STRESS SPACE OF SOLIDS (CONTINUED)

CSTR: 32037.14.aps.10.171
PDF
导出引用
  • 前文1综合四理论2,3,4,5构成固体现实应力空间之一初步理论,大体反映固态静力学性质,对金属较对非金属固体反映得当,后者受范形变曲面有异于弥氏圆柱。总起来看,前文仅涉及原则概念,未触及具体问题。为使此理论对金属压力加工及材料试验研究有所帮助,本文进一步研究几个问题:1)由应力空间图形比较不同金属的静力学性质;2)受范形变效率及其计算;3)形变过程之轨迹;并得到一定数量或质量上的结论。同时,附带对前文1中一个实验记录图的错误作修正,包括在附录内。

     

    A general theory on the realistic stress space of solids was formulated in a previous paper. In this paper, the bell stress spaces of several metals are compared, the concept of "efficiency of plastic deformation" is introduced and formulated, and the locus of deformation is discussed in connection with the theory of bell stress space. The main concepts of this paper are:Because the concept of strength of solids is associated with the stress state, it is difficult to bring out the concrete meaning of strength by a brief definition. Inasmuch as the volume of the closed stress space is a complete and concrete measure of the fracture strength and the limit of strain-hardened elastic strength in all stress states, we are inclined to define this volume as strength. This is not just a matter of definition; the important point is that the size and shape of the closed space actually reflect the physical and mechanical aspects of strength, and it gives one a clear impression about what is meant by strength.The concept of "efficiency of plastic deformation" arises from the fact that one may raise the internal potential energy of a solid infinitely without causing plastic deformation if the stress state is not favourable. This efficiency is the ratio of plastic distortion energy to the sum of elastic and plastic strain energies. It may be formulated, by simple arguments, as a function of octahedral shear strain and a stress state parameter c=θ/τ, where θ is the average normal stress and τ the octahedral shear stress. It increases with increasing strain and decreases with increasing hydrostatic stress, and it is actually measured by the length and the direction cotangent (c) of the position vector with respect to the hydrostatic axis.A process of deformation can hardly be well understood without knowing its locus of deformation in relation to the limiting surfaces of the stress space. By the theory of bell stress space and experimental measurements, such locus can be located. A locus for strip rolling is presented. It is interesting to note that there is a natural tendency for continuous processes of deformation to turn towards the 111 direction in order to make the total strain energy of the system a minimum.

     

    目录

    /

    返回文章
    返回