搜索

x
中国物理学会期刊

广义相对论的旋量和复矢量形式

CSTR: 32037.14.aps.23.5

THE SPINOR FORMALISM AND THE COMPLEX-VECTOR FORMALISM OF GENERAL RELATIVITY

CSTR: 32037.14.aps.23.5
PDF
导出引用
  • 本文利用Cartan外微分法,给出结构方程的旋量形式,从而自然得出Newman-Penrose方程。进而由旋量空间出发,利用sl(2C)代数引出广义相对论的复矢量形式。通常采用的Cahen-Debever-Defrise复矢量形式及Brans复矢量形式是这里的特殊情形。这样,便从么模群SL(2C)及其李代数sl(2C)的角度得到了引力场复矢量表述的普遍形式,并把旋量和复矢量形式统一了起来。

     

    In this paper, using E. Carten's exterior calculus, we give the spinor form of the structure equations, which leads naturally to the Newman-Penrose equations. Further, starting from the spinor space and the sl(2C) algebra, we construct the general complex-vector formalism of general relativity. We find that both the Cahen-Debever-Defrise complex-vector formalism and the Brans one are its special cases. Thus, the spinor formalism and the complex-vector formalism of general relativity are unified on the basis of the unimodular group SL(2C) and its Lie algebra.

     

    目录

    /

    返回文章
    返回