搜索

x
中国物理学会期刊

奇异吸引子容量计算中的不收敛问题

CSTR: 32037.14.aps.33.437

ON THE NONCONVERGENCE PROBLEM IN COMPUTING THE CAPACITY OF STRANGE ATTRACTORS

CSTR: 32037.14.aps.33.437
PDF
导出引用
  • 在用盒子计数法来计算奇异吸引子容量时,常常遇到收敛慢的问题,这是因为差分方程的周期与其相应的原微分方程的周期不同,以及阻尼因子的原因。在积分过程中简单地减少时间步长的办法,不仅延长计算时间,而且会更阻止收敛。正确的选择采样间隔可以克服不收敛问题。我们给出强迫布鲁塞尔振子的数值研究实例,以说明上述结论。

     

    The convergence of box-counting algorithm for computing the capacity of strange attrac-tors is affected by the discretization procedure, because the period of the difference equations differs from that of the original ODE'S and, in addition, a damping factor appears. Simply decreasing the time-steps in the integration scheme not only costs more computer time, but also may deprive the convergence at all. The nonconvergence problem can be overcome by choosing at first a correct sampling interval. We give numerical evidence for what said above on the example of the periodically forced Brusselator.

     

    目录

    /

    返回文章
    返回