-
本文考虑在Sierpinski gasket及分支Koch曲线上的自迴避迹行走,运用实空间重整化群技术求出了相应的关联长度临界指数ν。结果表明,在Sierpinski gasket上,自迴避迹行走与自迴避行走属同一普适类;而在较高分枝度(Rmax>3)的Koch曲线上,两者属不同普适类。Using an exact real-space renormalization-group technique, we show that self-avoiding trails (SAT) and self-avoiding walks (SAW) on the Sierpinski gasket enjoy the same critical exponent ν for the ‘correlation length' and therefore belong to the same universcllily class. On the other hand, it is shown that SAT on branching Koch curves with maximum ramification number Rmax>3 belongs to another universality class different from that of SAW.







下载: