搜索

x
中国物理学会期刊

对非线性量子场论与激光理论中的微扰谐振梯度算子方法的改进

CSTR: 32037.14.aps.38.879

IMPROVEMENTS ON THE PERTURBED HARMONIC OSCILLATOR LADDER OPERATORS METHOD IN THE NON LINEAR QUANTUM FIELD THEORY AND THE LASER THEORY

CSTR: 32037.14.aps.38.879
PDF
导出引用
  • 当微优按Hermite多项式Hk的收敛级数作如下展开时,V(X)=b2X2+Σk CkHk(b1/2X), 则可将其微扰梯度算子方法应用于微扰谐振子波动方程的求解中.发现若将Hermite多项式基与二项式系数函数依量子数一起使用,则可大大简化微扰梯度与因子分解函数.因此,在不增加其复杂性的情况下,便可求得任意级微扰的本征值与本征函数的分析表示式.通过计算,本文给出了X的偶性微扰势函数V(X),为了说明如何应用改进后的微扰梯度算子方法,本文重新研究了其势函数为V(x)=x2+λX2/(1+gX2),且g>0时的Schr?dinger方程的求解过程.

     

    The interaction potential with the form as V(x)= x2+λx2/(1+gx2) where g >0, appears in several areas of laser theory, quantum field theory, atom and nuclear physics. One could consider that the solution of the eigenequation either by the classical Rayleigh-Schr?dinger perturbation scheme or by the perturbed ladder operators scheme. Nevertheless, the perturbation series does not converge for any values of λ and g. In the present paper, it is shown that this difficulty can be overcome as long as the potential function can be expanded in a convergent series on the basis ofthe Hermite polynomials. Therefore, the eigenequation ((d2)/(dx2)-V(x)+ξ)φ(x)=0,∞2)/(dX2)-b2X2-Σkc2kH2k(b1/2X)+ξ)φ(X)=0.

     

    目录

    /

    返回文章
    返回