搜索

x
中国物理学会期刊

一族一维准晶的局部电子性质

CSTR: 32037.14.aps.41.1652

LOCAL ELECTRONIC PROPERTIES OF A CLASS OF ONE-DIM-ENSIONAL QUASICRYSTALS

CSTR: 32037.14.aps.41.1652
PDF
导出引用
  • 本文利用推广的实空间重整化群方法,研究按膨胀规则(A,B)→(AnB,A)构造的一族一维泛Fibonacci准晶系(An序列)的局部电子性质。所引入的2n2+1种基本变换可计算该族一维准晶中任一An序列在任意格点的局部格林函数和局部态密度。结果表明,该方法是有效的,An链的电子局部态密度象Fibonacci准晶一样,呈现临界性。

     

    Using the extended real-space renormalizaation-group approach, we study the local electr-onic properties of a class of one-dimensional quasicrystals (the generalized Fibonacci chains) in the framework of tight-binding model. These quasiperiodic systems are termed the An chains, which are associated with the sequences generated by the inflation rule (A, B)→(AnB, A). We introduce 2n2+1 transformations for calculating the local electronic Green's function and the local electronic density of state at any site in any one of An chains for the diagonal, offdiago-nal and combined models. It is shown that this approach is effective and the local electronic density of states is critical, just as that of Fibonacci quasicrystal.

     

    目录

    /

    返回文章
    返回