搜索

x
中国物理学会期刊

非零几何位相存在的条件及其计算公式

CSTR: 32037.14.aps.45.897

CONDITIONS FOR THE EXISTENCE OF NON-ZERO GEOMETRIC PHASE AND ITS FORMULA

CSTR: 32037.14.aps.45.897
PDF
导出引用
  • 给出了一个量子Hamiltonian系统存在非零绝热几何位相的必要条件:不同时刻的Hamiltonian量不可对易。我们指出,约束条件=0唯一地确定了归一化本征态矢|n′(t)>在不同时刻的位相关系,并且在此基础上讨论了非零绝热几何位相存在的充分必要条件:当=0时,|n′(T)>≠|n′(0)>;给出了计算绝热几何位相的普遍的时间积分公式。作为该公式的应用,计算了Solem和Biedenham讨论过的自旋1/2系统的绝热几何位相,并且指出,Solem和Biedenham所遇到的问题源于本征态矢在参数空间中的多值性。

     

    First we put forward an essential condition, for the existence of the non-zero adiabatic geometric phase of a quantum-mechanical Hamiltonian system, that the Hamiltonian operators at different times do not commute. Then it is shown that constraint =0 determines completely the phase relation of normalized eigenstate vectors │n' (t)> at different times. According to this property, we advance the sufficient and necessary condition for the existence of the non-zero adiabatic geometric phase, which is |n′(T)>≠|n′(0)> when =0. And also we derive a general time-integral formula for the adiabatic geometric phase along the line. Finally, as an application of it, we calculate the geometric phase of a spin 1/2 system once discussed by Solem and Biedenharn. It is pointed out that the problem encountered by them lies in the multi-valuedness of the eigenstate vector in parameter space.

     

    目录

    /

    返回文章
    返回