搜索

x
中国物理学会期刊

循环量子系统中状态演化的Bloch定理和同步几何相位的统一

CSTR: 32037.14.aps.46.227

BLOCH THEOREM FOR THE EVOLUTION OF STATES IN THE CYCLIC QUANTUM SYSTEMS AND THE UNIFICATION OF RESONANT GEOMETRIC PHASES

CSTR: 32037.14.aps.46.227
PDF
导出引用
  • 对于Hamiltonian随时间作周期变化的量子系统中状态的演化,Bloch定理亦成立,并可据此定义一种新的几何相位———Bloch相位.证明用这种新的几何相位可以把迄今发现的所有同步(即量子态演化一周后获得的)几何相位统一起来,即Bloch相位等于Pancharatnam相位、Aharonov-Anandan相位和Lewis-Riesenfeld相位,并且在绝热条件下化为Bery相位.为此,先对Pancharatnam相位、Aharonov-Anandan相位和Lewis-Riesenfeld相位的定义作等价的改变,使它们变得有物理意义,并把Lewis-Riesenfeld相位和Berry相位推广到简并情形.还讨论了Bloch相位的求解问题

     

    The Bloch theorem holds also for the evolution of states in the cyclic quantum systems in which the Hamiltonian varies cyclically with time.In light of the theorem a new type of geometric phases——Bloch phases——is defined.In this paper it is shown that the resonant-(i.e.,acquired by certain states after evolving a cycle)geometric phases so far discovered can all be unified into the Bloch phases.That is,the Bloch phases are identical with the Pancharatnam phases,Aharonov-Anandan phases and Lewis-Riesenfeld phases,and reduce to the Berry phases in adiabatic approximation.To this end,the equivalent alternation of defining the former three types of quantum phases and the generalization of Lewis-Riesenfeld phases and Berry phases to the degenerate case are made.In addition,two methods are given for efficiently searching for the Bloch phases.

     

    目录

    /

    返回文章
    返回