搜索

x
中国物理学会期刊

具有三个任意函数的变系数KdV-MKdV方程的精确类孤子解

CSTR: 32037.14.aps.48.1957

EXACT SOLITON SOLUTIONS OF THE VARIABLE COEFFICIENT KdV-MKdV EQUATION WITH THREE ARBITRARY FUNTIONS

CSTR: 32037.14.aps.48.1957
PDF
导出引用
  • 利用一个新的变换将变系数KdV-MKdV方程约化为三阶非线性常微分方程(NODE),考虑这个NODE,获得了变系数KdV-MKdV方程的若干精确类孤子解.这种思路也适合于其他的变系数非线性方程,如变系数KP方程、变系数sine-Gordon方程等.

     

    In this paper,first,by using a new transformation,the variable coefficient KdV-MKdV equation is reduced to a third-order nonlinear ordinary differential equation (NODE),and then several exact soliton-solutions for the variable coefficient KdV-MKdV equatioin are obtained through considering this NODE.The method can be also used to solve other nonlinear equations,such as the variable coefficient KP equation,sine-Gordon equation and so on.

     

    目录

    /

    返回文章
    返回