搜索

x
中国物理学会期刊

全光学冷却与囚禁133Cs原子玻色-爱因斯坦凝聚的可能性

CSTR: 32037.14.aps.50.660

POSSIBILITY OF ALL OPTICALLY-COOLED AND TRAPPED 133Cs ATOMIC BEC

CSTR: 32037.14.aps.50.660
PDF
导出引用
  • 综述了近年来有关蒸发冷却133Cs原子样品的实验进展,分析了磁囚禁133Cs原子玻色爱因斯坦凝聚(BEC)的困难,并在此基础上提出了一个全光型冷却与囚禁133Cs原子BEC的新方案.该方案主要由一个来自半导体激光(λ=0852μm)的倒金字塔形中空光束重力光学囚禁(pyramidal-hollow-beam gravito-optical trap,缩写为PHB GOT)和一个来自Ar+激光(λ=05013μm)的圆锥形中空光束重力光学囚禁(conical-hollow-beam gravito-optical trap,缩写为CHB GOT)组成.在PHB GOT中,冷原子经历了一个有效的中空光束感应的Sisyphus冷却(也即强度梯度冷却)和抽运光感应的几何冷却,原子温度将被从磁光囚禁(MOT)温度(约为60μK)冷却至几个光子反冲极限(约为2μK);而在Ar+中空光束囚禁(CHB GOT)中,冷原子将被Raman冷却或速度选择相干粒子数囚禁技术(velocity-selection coherent population trap,缩写为VSCPT)进一步冷却至光子反冲极限以下,并被激光频率高于原子共振频率的(也即蓝失谐的)covering光束压缩.我们就PHB冷却的动力学过程进行了Monte-Carlo模拟,并计算了Ar+中空光束囚禁133Cs原子的光学势.研究结果表明,实现一个全光学冷却与囚禁的133Cs原子BEC是可能的

     

    The experimental progress on rf evaporative cooling of 133Cs atomic sample in recent year is reviewed, and the difficulty of magnetically trapped 133Cs atomic Bose-Einstein condensation (BEC) is analyzed. In this paper, we propose an all-optically-cooled and-trapped 133Cs BEC scheme, which is composed of a pyramidal-hollow-beam gravito-optical trap (PHB GOT) from a diode laser (λ=0.852 μm) and a conical-hollow-beam (CHB) GOT from an Ar+ laser (λ=0.5013 μm). In the PHB GOT, the cold atoms experience an efficient hollow-beam induced Sisyphus cooling (i.e., intensity gradient cooling) and repumpimg-beam induced geometric cooling, and they will be cooled to a few photon-recoil limits (~2 μK) from MOT's temperature (~60 μK). Whereas in the Ar+ hollow-laser-beam trap, cold atoms will be further cooled by Raman cooling (or velocity-selection coherent population trapping) and compressed by a blue-detuned covering beam. We have performed Monte-Carlo simulations for PHB cooling process, calculated the optical potential for 133Cs atoms in Ar+ hollow laser beam, and estimated total collision loss and atomic density. Our study shows that the realization of an optically-cooled and-trapped BEC of 133Cs atoms may be possible in our all-optical dipole trap.

     

    目录

    /

    返回文章
    返回