搜索

x
中国物理学会期刊

Poincar-Chetaev变量下变质量非完整动力学系统的运动方程

CSTR: 32037.14.aps.50.805

EQUATIONS OF MOTION OF VARIABLE MASS NONHOLONOMIC DYNAMICAL SYSTEMS IN POINCARé-CHETAEV VARIABLES

CSTR: 32037.14.aps.50.805
PDF
导出引用
  • 研究Poincaré-Chetaev变量下,变质量非线性非完整力学系统的运动方程.首先,由变质量力学系统的D’Alembert-Lagrange原理导出Chaplygin型方程、Nielsen型方程及Appell型方程.其次,研究Chaplygin方程与Appell方程的等价性问题.最后,举例说明新结果的应用.

     

    The equations of motion of variable-mass nonlinear nonholonomic dynamical systems in Poincaré-Chetaev variables have been studied. Firstly, the Poincaré-Chetaev variables x1,x2,…,xn and more with n-m holonomic constraints and m-l nonlinear nonholonomic constraints of Chetaev type were introduced. Secondly, the equations of Chaplygin's form, Nielsen's form and Appell's form were derived from the D'Alembert-Lagrange principle for a variable-mass mechanical system. Finally, the problem of equivalence between the Chaplygin's equations and the Appell's equations was discussed. Then the theory is illustrated by an example due to Appell.

     

    目录

    /

    返回文章
    返回