搜索

x
中国物理学会期刊

不同催化剂热解法制备硼碳氮纳米管过程中的影响

CSTR: 32037.14.aps.52.1808

The effect of different catalysts on the growth of boron carbonitride nanotubes by thermal decomposition

CSTR: 32037.14.aps.52.1808
PDF
导出引用
  • 对以钴、镍、钴/镍、钴/二茂铁、镍/二茂铁和二茂铁为催化剂高温热解法制备的硼碳氮(BCN)纳米管的结构、产率等的影响进行了分析.实验中发现催化剂在BCN纳米管的生长过程中有重要作用.高分辨率透射电子显微镜图像显示在860℃时,以镍/二茂铁、钴/二茂铁为催化剂生成的BCN纳米管具有“竹节状”结构,且管壁较薄,镍、钴或镍/钴作催化剂生成的BCN纳米管不具有明显的“竹节状”结构,管壁较厚,且粗细不均匀,而以二茂铁作催化剂没有BCN纳米管生成.在所有生成的BCN纳米管中含有催化剂颗粒.通过对生成的BCN纳米管的结

     

    The effect of cobalt, nickel, cobalt/nickel, cobalt/ferrocene, nickel/ferrocene and ferrocene catalysts on the morphology and yield of boron carbonitride(BCN) nanotubes produced by thermal decomposition at 860℃ was studied. It is found that the catalysts have a strong effect on the growth of BCN nanotubes. Transmission electron microscopy images reveal that bamboo-shaped thinner wall nanotubes with a higher yield are produced with nickel/ferrocene and cobalt/ferrocene as catalysts, whereas thicker wall nanotubes with a lower yield are generated with cobalt, nickel and cobalt/nickel as catalysts. BCN nanotubes cannot be produced with ferrocene alone as catalyst. Catalyst particles were found together with the BCN nanotubes. The morphology and yield of BCN nanotubes depend on the catalysts in the following order: nickel/ferrocene≈cobalt/ferrocene>cobalt≈nickel>cobalt/nickelferrocene. Their Raman spectroscopies were also studied.

     

    目录

    /

    返回文章
    返回