搜索

x
中国物理学会期刊

测不准关系和最小不确定态

CSTR: 32037.14.aps.52.2961

The uncertainty relations and minimum uncertainty states

CSTR: 32037.14.aps.52.2961
PDF
导出引用
  • 利用力学量算符的厄密性和希尔伯特状态矢量模的非负性,重新给出了关于测不准关系的数 学证明.简单的证明过程不仅揭示了测不准关系某些经常被忽视的特征,而且还可以直接给 出最小不确定态的充要条件.在此基础上,我们提出了对易子为非零常数的任意一对力学量 的最小不确定态问题,并且采用玻色型产生和湮没算符给出了它们的压缩态的明显表达式.

     

    Based upon some basic properties of Hermitian operators and Hilbert state vector s, the Heisenberg's uncertainty relations are analyzed in details. The necessary and sufficient condition for the minimum uncertainty states is re-obtained dire ctly from our proof. We propose also the problem of squeezed states for any coup le of dynamical variables, and solve it by using the bosonic creation and annihi lation operators.

     

    目录

    /

    返回文章
    返回