搜索

x
中国物理学会期刊

量子条件振幅算子性质的研究

CSTR: 32037.14.aps.53.1647

The research of properties of the quantum conditional amplitude operator

CSTR: 32037.14.aps.53.1647
PDF
导出引用
  • 分析量子条件振幅算子的性质,该算子起一个类似于在经典信息理论中的条件概率的作用.论证表示一个量子双组元系统的条件算子的频谱在局域幺正变换下是不变的,并且表明它的不可分性.证明一个可分态的条件振幅算子不能有一个超过1的本征值.得出一个在von Neumann条件熵的非负性基础上的相关的可分性条件.

     

    This paper analyzes the properties of the quantum conditional amplitude operator.This operator plays a role similar to that of the conditional probability in classical information theory.One argues that the spectrum of the conditional operator that characterizes a quantum bipartite system is invariant under local unitary transformations,and shows its inseparability.It is proven that the conditional amplitude operator of a separable state cannot have an eigenvalue exceeding unity.A related separability condition based on the non-negativity of the von Neumann conditional entropy is obtained.

     

    目录

    /

    返回文章
    返回