The structure and transport properties of perovskite (La1-xYx)2/3Ca1/3 MnO3 (0≤x≤0.3) systems are systematically investigated. It is found that all the compounds show a single phase structure. With the increase of Y3+ doping content the metalinsulator transition temperature TMI(M—I) shifts to lower temperatures. While the relevant resistance peak ρp is sharply increased, for the sample of x=0.3, it has been enhanced by eight orders of magnitude larger than the non-doped sample(x=0.0). In these materials a large magnetoresistance effect has been observed under an external magnetic field. At the same time, it is also directly shown that the correlation between the transport properties and the variation of crystal structure from the experiment result. Based on the double exchange model and the variable-range-hopping(VRH) theory, the mechanism of the influence of Y doping for La in La2/3Ca1/3MnO3 systems is also discussed.