搜索

x
中国物理学会期刊

反常扩散与分数阶对流-扩散方程

CSTR: 32037.14.aps.54.1113

Anomalous diffusion and fractional advection-diffusion equation

CSTR: 32037.14.aps.54.1113
PDF
导出引用
  • 反常扩散现象在自然界和社会系统中广泛存在.考虑了扩散过程的时间相关和时空相关性,用非局域性的处理方法,在传统的二阶对流扩散方程基础上,得到了分数阶对流扩散方程,以此方程来描述反常扩散.在此方程中,弥散项和对时间的导数为分数阶导数所代替.由此分数阶对流扩散方程,对传统的费克扩散定律进行推广,得到了广义的分数费克扩散定律,分数费克扩散定律说明某时刻空间中某点的流量不仅与其领域内的浓度梯度有关,而且与整个空间中其他不同点的粒子浓度、浓度变化的历史,甚至初始时刻的浓度有关.讨论了方程的解——分数稳定分布,并由此说明了扩散运动的平均平方位移是运移时间的非线性函数.

     

    Anomalous diffusion happens often in nature and society systems. In this paper, we develop a nonlocal method with temporal and spatial correlations to introduce a fractional order advectiondiffusion equation based on the usually used local 2_nd order advectiondispersion equation. In this equation, the diffusion is a fractional order derivative of time and space. And then, we extend the classical Fick's law for standard diffusion to a general fractional Fick's law. The fractional Fick's law shows that the current is related to the concentrations all over the space, also depends on the previous history and the initial condition. The solution of this fractional order advectiondispersion equation is fractional Lévy probability distribution density. And the mean square displacement is a nonlinear function of time.

     

    目录

    /

    返回文章
    返回