搜索

x
中国物理学会期刊

浸润接触线的摩擦性质与固体表面张力的Wenzel行为

CSTR: 32037.14.aps.54.2202

Frictional property of wetting contact line and Wenzel’s behavior of solid surface tension

CSTR: 32037.14.aps.54.2202
PDF
导出引用
  • 依据Adam和Jessop关于固-液-气三相接触线具有静摩擦性的观点,能从浸润接触角数据推算 出固体的表面张力系数,但结果显然会与摩擦条件的具体形式有关.以报道的不锈钢和聚丙 烯实验数据为例,通过对比Mises和Amonton两种摩擦定律给出的表面张力系数,后者给出的 张力才具有总是随表面粗糙性的增大而增加的Wenzel效应,以及当固-液,固-气界面的张力 系数之差等于液-气界面的张力系数时,退后角将变为零的全浸润条件.这似乎表明用Amonto n定律描写接触线的静摩擦要更为合理.

     

    Based on the static-friction model for solid-liquid-vapor contact line suggested by Adam and Jessop,one can calculate surface-tension coefficient of solids from the data of wetting angles, but the results depend on the friction condition adopted. Using the data reported on stainless steel and polypropylene samples as examples, we have compared the surface-tension coefficients given by the Mises yield condition and Amonton's friction law. It is found that only the latter pos sesses always the Wenzel behavior which claims an increase of surface-tension co efficient with surface roughness, as well as total wetting condition, namely rec eding angle vanishes when the difference of solid-liquid and solid-vapor coeffic ients equals that of liquid-vapor. This shows that the Amonton's law seems to be more reasonable for describing the static friction of contact line.

     

    目录

    /

    返回文章
    返回