搜索

x
中国物理学会期刊

基于Hopfield神经网络的信元调度多重输入队列ATM交换结构及算法

CSTR: 32037.14.aps.54.2435

A multiple input-queued ATM switching fabric based on hopfield neural network cell scheduling

CSTR: 32037.14.aps.54.2435
PDF
导出引用
  • 提出了一种基于Hopfield神经网络(HNN) 信元调度的多重输入队列ATM交换结构(ASF),消除 了队头(HOL)阻塞造成的性能恶化.计算机仿真结果显示,与单先入先出(FIFO)队列和开窗 输入缓冲ASF相比,该方案大大提高了吞吐率并减少了信元时延.

     

    A multiple input-queued ATM switching fabrics (ASF) for scheduling cell based on Hopfield neural network (HNN) is proposed. This scheme eliminates degeneration of performance due to head-of-line (HOL) blocking. Simulation results show that, compared with the single first in_first out and window input-queued ASF, the pr oposed approach can greatly improve the throughput and reduce the cell delay.

     

    目录

    /

    返回文章
    返回