-
与经典水平下的研究不同,研究了(2+1)维含非Abel Chern-Simons 项的非线性σ模 型量子水平的分数自旋性质.根据约束Hamilton系统的Faddeev-Senjanovic(FS)路径积分量 子化方案,对该系统进行量子化,由量子Noether定理给出了量子守恒角动量,说明了在量子 水平上该系统仍具有分数自旋的性质.
-
关键词:
- 约束Hamilton系统 /
- 分数自旋 /
- O(3)非线性σ模型
The property of fractional spin of O(3) non-linear sigma model with non-Abel Chern-Simons term at the quantum level is studied. This formulation is differen t from the classical theories. According to the rule of path integral quantizati on for a constrained Hamiltonian system in Faddeev-Senjanovic scheme,the system is quantized. Based on the quantal Noether theorem,the quantal conserved angu lar momentum is obtained and the fractional spin at the quantum level of this sy stem is presented.







下载: