搜索

x
中国物理学会期刊

电感耦合等离子体CVD低温生长硅薄膜过程中的铝诱导晶化

CSTR: 32037.14.aps.54.269

Aluminum-induced crystallization during deposition of silicon films by inductively coupled plasma CVD

CSTR: 32037.14.aps.54.269
PDF
导出引用
  • 利用电感耦合等离子体CVD方法在350℃的低温下在镀Al玻璃衬底上制备出具有良好结晶性的Si薄膜.利用x射线衍射、紫外-可见分光椭圆偏振谱、原子力显微镜及x射线光电子谱等研究了薄膜的结构、表面形貌和成分分布等.结果表明,用这种方法制备的Si薄膜不但晶化程度高,而且具有良好的(111)结晶取向性,晶粒尺寸大于300nm,样品中无Al的残留.结合电感耦合等离子体的高电子密度特征讨论了低温生长过程中Al诱导Si薄膜晶化的机理.

     

    Silicon thin films were deposited on Al-coated glass substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD) in SiH4/H2 mixtures at a low temperature of 350℃. The structure of the films was characterized by x-ray diffraction, x-ray photoelectron spectrum, atomic force microscopy and spectroscopic ellipsometry. It has been shown that the films are of a highly ordered structure with a strong (111) orientation. Grain size is larger than 300 nm. There is no residual Al in the films. Considering the high electron density in inductively coupled plasma, a preliminary interpretation is given for the mechanism of Al-induced crystallization during low-temperature deposition of Si films.

     

    目录

    /

    返回文章
    返回