搜索

x
中国物理学会期刊

闪速存储器中应力诱生漏电流的产生机理

CSTR: 32037.14.aps.54.5867

Generation mechanism of stress induced leakage current in flash memory cell

CSTR: 32037.14.aps.54.5867
PDF
导出引用
  • 通过实验研究了闪速存储器存储单元中应力诱生漏电流(SILC)的产生机理. 研究结果表明,在低电场应力下,其可靠性问题主要是由载流子在氧化层里充放电引起,而在高电场下,陷阱和正电荷辅助的隧穿效应导致浮栅电荷变化是引起闪速存储器失效的主要原因. 分别计算了高场应力和低场应力两种情况下SILC中的稳态电流和瞬态电流的大小.

     

    The generation mechanism of stress induced leakage current (SILC) in flash memory cell is studied by experiments. The result shows that the reliability problem under low electronic field stress is mainly caused by carriers charging and discharging inside the oxide, while under high electronic field, the trap-assisted tunneling and positive charge assisted tunneling induced charge variation of floating-gate is the major cause of flash memory cell failure. For both high and low electronic field stresses, the transient current and the steady-state current in SILC are calculated, respectively.

     

    目录

    /

    返回文章
    返回